
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 1

3rdParTEE: Securing Third-party IoT Services
using the Trusted Execution Environment

Jinsoo Jang and Brent Byunghoon Kang, Member, IEEE

Abstract—Advancements in the Internet of Things (IoT) have resulted in the connection and deployment of numerous smart and
embedded devices. Although such devices enable various services such as smart grids, they attract more attackers to the IoT world. A
trusted execution environment (TEE), which can be created by using TrustZone technology, is a promising security artifact for
protecting critical operations and sensitive data of IoT devices. Unfortunately, although TrustZone is available in most ARM
architecture-based devices ranging from microcontrollers to high-end smart devices, it has not been widely adopted by third-party IoT
service providers because of its limited access. That is because the TEE is maintained by the TEE platform vendors to preserve its
security. Therefore, third parties must adhere to strict policies and procedures to ensure the deployment of trusted services in the TEE.
This aspect hinders the fast development and deployment of IoT services. In this work, we propose 3rdParTEE to address this problem
by enabling third-party IoT service providers to readily run their trusted services, thereby minimizing their dependency on the TEE
maintainers. Specifically, 3rdParTEE facilitates the secure running of the third-party’s native kernel driver in the TEE without hampering
the security of the existing TEE components. To demonstrate the effectiveness of our approach, we ran three kernel drivers for
maintaining the IoT services platform (e.g., kernel integrity check) in the TEE. Additionally, during the performance evaluation, we
observed a reasonable performance overhead of up to 7% when running the kernel drivers in such a secure manner.

Index Terms—Trusted Execution Environment, IoT Security

F

1 INTRODUCTION

THE Internet of Things (IoT) industry continues to grow.
According to Ericsson [1], the number of IoT devices is

expected to increase to 24 billion by the year 2050. Support-
ing this expectation, IoT devices for everyday life, including
in-home entertainment, critical infrastructure, and industry,
continue to emerge [2], [3]. Unfortunately, this situation
makes IoT devices attractive targets for attackers [4]. When
it comes to IoT devices, the tendency that security is less
prioritized than fast deployment and productivity might
attract more attackers to the IoT world. It has been proven
that the vulnerabilities of IoT devices can be abused to
constitute IoT botnets [5], [6], [7], [8] and take such devices
hostage after they have been released to the public [9], [10].

A trusted execution environment (TEE), which isolates
the execution context from a rich execution environment
(REE), can be a promising technique for securing IoT de-
vices. In other words, security critical logic and operations,
such as cryptographic operations and firmware recovery,
can be effectively isolated, even if the operating system in
the REE is compromised. ARM TrustZone is one such TEE
technique, which is available on ARM architecture-based
platforms ranging from small IoT devices to servers [11].
Researchers have proposed various security applications
using TrustZone, including a virtualized TEE for cloud
servers [12], a one-time password for mobile devices [13],
and secure advertising [14]. Specifically, Samsung utilizes

• B. Kang is with Korea Advanced Institute of Science and Technology.
E-mail: brentkang@kaist.ac.kr

• J. Jang is with Chungnam National University. E-mail: jisjang@cnu.ac.kr

Corresponding author: Brent Byunghoon Kang
Copyright (c) 2022 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

TrustZone to protect the operating system’s (OS) kernel [15]
in a manner that deprivileges the OS and enforces the emu-
lation of its critical operations in the TEE, thereby ensuring
the immutability of the OS. Apart from its application in
mobile and server environments, TrustZone has also gained
attention in the IoT field. As a result, researchers have
designed TrustZone-based security measures for IoT devices
[16], [17].

Although TrustZone enables the system to benefit from
the TEE, the accessibility of third-party application develop-
ers and IoT service providers to TrustZone is limited. This
is because the TEE belongs to the system on a chip (SoC)
manufacturers [18], [19], [20] or TEE software platform
providers [21], [22], [23]. The TEE is generally a paid service
that is supported based on membership. TEE clients must
develop trusted applications (TAs) using the TEE applica-
tion programming interfaces (APIs) provided by a specific
TEE vendor. Additionally, such TAs are strictly verified by
TEE vendors to prevent the deployment of a new TA with
an exploitable bug. These TEE features increase the time
required for the development and deployment of new or
updated trusted IoT software, and they conflict with the
time-to-market attributes of IoT services. We argue that this
is the major reason why third-party IoT service providers
are reluctant to use TrustZone.

In this study, to minimize the disadvantages of TEEs,
we propose 3rdParTEE, which is a TEE platform that en-
ables third parties to readily use the TrustZone-based TEE.
3rdParTEE aims to (1) ensure the secure running of third-
party software without bloating the existing TEE and with-
out introducing a new attack surface to the TEE. It also
aims to (2) minimize the use of separate APIs to develop
trusted applications. Specifically, we propose an approach

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 2

for protecting kernel-privileged software, such as a loadable
kernel module (LKM), using the TEE, which differentiates
our work from previous studies that focus on protecting
user-level applications [17], [24], [25], [26]. We expect third-
party IoT service providers to benefit from 3rdParTEE in
a manner that ensures the secure OS-privileged operations.
For instance, any update to an OS whose integrity is pro-
tected by the TEE-based kernel integrity monitor [15], [27]
generally requires the TEE vendor to verify the update and
apply it to the OS image. However, 3rdParTEE enables the
third party to serve urgent device management operations,
such as the immediate fixing of OS bugs in memory, without
waiting for the vendor to complete verification and apply
the change to the OS image.

3rdParTEE consists of two parts: the REE component
and the TEE component. In the REE side, we implemented
a simple loader that communicates with the 3rdParTEE
component in the TEE side to send a request for the secure
execution of the kernel module provided by the third party.
To handle this request, the TEE component of 3rdParTEE
first verifies the signature and integrity of the provided
kernel module based on an asymmetric cryptographic al-
gorithm. It then shields the execution of the kernel module
using the TEE. To this end, we designed 3rdParTEE to
leverage the TrustZone address space controller (TZASC),
which enables filtering access to a TEE memory region.
Finally, although we assume that IoT service providers are
not malicious, any programming errors that might affect the
existing TEE platform’s security, such as mispatching the
TEE memory instead of the REE OS, must be considered. To
address this issue, we ensure that any access to the TEE
memory region by the shielded module is monitored by
setting hardware debugging watchpoints, as demonstrated
in previous studies [28].

We implemented our 3rdParTEE prototype using an
Arndale board equipped with a 32-bit ARM dual-core pro-
cessor and 2 GB of memory. To evaluate the performance
of 3rdParTEE, we ran three Linux-based LKMs under the
protection of 3rdParTEE. Each module conducts OS man-
agement operations, such as hashing the REE OS region,
patching kernel memory, and traversing dynamic kernel
data structures. Owing to additional operations, such as
the integrity check and the communication between the
REE and the TEE, running a kernel module protected by
3rdParTEE imposed a maximum overhead of 7%.

The contributions of this study are as follows:

• 3rdParTEE enables the isolation of privileged soft-
ware, such as a LKM, from an untrusted REE
OS. This differentiates our work from previous
TrustZone-based work that is limited to protecting
user applications.

• Developers can simply follow conventional kernel
module development practices to create 3rdParTEE-
protected software. This aspect exempts the need to
use TEE-dedicated APIs, thereby reducing develop-
ment effort.

• Various urgent device management operations that
specifically require TEE privileges can be conducted
by IoT service providers on the fly without waiting
for the TEE vendor’s intervention, which could in-

hibit the time-to-market requirements of IoT devices.

2 BACKGROUND

Fig. 1: ARM architecture with TrustZone.

2.1 ARM TrustZone

ARM TrustZone is a security extension of ARM processors.
Through TrustZone technology, a system can be partitioned
into two execution environments: the REE and the TEE.
General software stacks, such as those based on Linux and
Android, are hosted in the REE. On the other hand, the TEE
protects security critical applications, such as cryptographic
services and digital rights management (DRM). Various
hardware components are supported to ensure isolation
between these environments. First, ARM processors define
different security states: secure and non-secure states. In
non-secure states, the user, kernel, and hypervisor modes
are supported. In secure states, the user, kernel, and monitor
modes are available. Notably, as it pertains to the monitor
mode, the running software manages the switching between
the environments by saving and restoring the context of
each environment. In addition to the processor’s security
state, the TZASC is provided to partition the DRAM for
each environment. Using the TZASC, we can define several
physical memory regions and their access permissions de-
pending on the processors’ security states. For example, a
specific range of the physical memory can be configured as
a TEE region by allowing its access from the TEE (secure
state) but not from the REE (non-secure state). In addition
to security state and memory access control, TrustZone also
protects input/output (IO) peripherals, such as displays
and keypads. The TrustZone protection controller (TZPC)
enables the creation of a secure IO channel by dynamically
connecting such peripherals to the TEE, thereby preventing
interference resulting from the compromised REE.

2.2 Virtual Memory System on ARM

ARM processors support virtual memory systems to trans-
late virtual addresses to physical addresses. Such transla-
tions are performed based on page tables whose base ad-
dresses are configured using translation table base registers
(TTBRs). Generally, there are two architecture-supported
TTBRs: TTBR0 and TTBR1. In 64-bit systems, TTBR0 and
TTBR1 generally contain the page table base addresses for
the user and the kernel space, respectively. In 32-bit systems,
because of their small address range, i.e., 4 GB, only one
page table can be used. For example, a 32-bit Linux-based

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 3

system can be configured to use TTBR0 to map the entire
address space covering the user and kernel spaces. In this
case, the settings of the translation table base control register
(TTBCR) determine whether one of the TTBRs is leveraged
or whether both TTBRs are leveraged. Specifically, when the
short-descriptor format [29] is used, the N flag in the TTBCR
determines the size of the address’ translation conducted
through the page tables pointed to using TTBR0 and TTBR1.
For example, if the N value is 0b000, only TTBR0 is used.
Otherwise, both TTBR0 and TTBR1 are leveraged, and the
address ranges translated using each TTBR are determined
by the N value. For instance, if the N value is set to 0b001,
the addresses that are under and over 2 GB of virtual mem-
ory are translated using TTBR0 and TTBR1, respectively.
The TTBRs and TTBCR are banked registers for non-secure
and secure states of the processor. Therefore, they can be
independently configured in the REE and in the TEE.

2.3 IoT Device Protection using TrustZone

To ensure the security of the TEE, its access is restricted to
and managed by a few stakeholders, such as SoC designers,
device manufacturers, and secure OS providers, who have
control over critical hardware (e.g., eFUSE and TZASC) and
software (e.g., secure OS). Based on the dominion of TEE,
various TEE-based IoT security frameworks and solutions
have been introduced. For example, Samsung’s TrustZone-
based mobile device security technologies, known as KNOX
and TIMA [15], are revisited and similarly applied to IoT
devices, such as smart TVs [30]. Through such security mea-
sures, the conventional OS of such devices is deprivileged,
and security critical system operations, such as page-table
management, are undertaken by a security agent running in
the TEE. Trustonic introduces a TEE OS named Kinibi [31] as
well as its dedicated APIs for building TAs. Samsung and
Qualcomm also provide their own TEE platforms, Teegris
[32] and QTEE [33], respectively. However, those platforms
are proprietary and require vendors’ intervention to deploy
the applications in the TEE. That is, applications are devel-
oped using TEE-specific SDKs and verified and signed by
the vendors before their deployment in the TEE. To access
such commercial TEEs, third parties need to sign up as
partners of TEE vendors and also buy licenses. For instance,
Samsung defines three types of commercial licenses for
registered partners depending on the supported TEE APIs
and services [34].

On the other hand, ARM provides the Mbed [22] de-
velopment platform, which is an open source platform that
supports secure and normal OSs for high-end devices and
small microcontrollers. In particular, the open source TEE
called OP-TEE is hosted as a secure OS. However, despite
its open source support, IoT service providers cannot fully
control the TEE unless they have access to the hardware-
based root of trust (e.g., a device’s secret key in eFuse [35])
that is managed in the TEE.

3 MOTIVATION AND ATTACK MODEL

3.1 Motivation

We assume the conventional TEE usage model in which a
TEE vendor and a TEE client are separated. In this case,

the client refers to an IoT service provider, i.e., an IoT
device owner, who implements IoT services and manages
the software running in the REE (e.g., Linux). On the other
hand, the TEE vendor manages the TEE software stacks,
such as the trusted applications, secure OS, and firmware.
Although the client cannot manage the TEE directly, the
REE software depends on the TEE to some extent to benefit
from defensive measures, such as secure boot and runtime
kernel protection. The secure boot mechanism verifies the
integrity and signature of the REE OS at boot time, whereas
the runtime kernel protection ensures that the kernel static
region is immutable at runtime. Both techniques require the
intervention of the TEE, such as the hash validation of the
REE OS or the emulation of critical OS operations shown by
TZ-RKP [15]. This dependency results in the intervention
of the TEE vendors to reflect any update of the protected
REE components in the TEE-based protection (verification)
mechanism. For instance, TZ-RKP ensures that the OS text
region is in read-only format and cannot be patched at
runtime without TEE privileges. To achieve this, (1) a new
TEE service that conducts in-memory patching should be
deployed or (2) a new version of the REE OS image must be
redeployed and loaded by rebooting the device.

The downside of the conventional TEE model is that
it increases the complexity of managing an IoT device.
As previously mentioned, maintaining the software stack
protected by a TEE requires the TEE vendor’s interven-
tion. 3rdParTEE attempts to address this issue by enabling
IoT service providers to securely run their code with TEE
privileges without introducing a new attack vector to the
TEE. Additionally, the existing TEE management model
can be preserved. Simultaneously, IoT service providers can
perform their IoT device management operations in parallel
without waiting for the TEE vendor’s intervention. We
expect such operations to imperatively fix critical OS bugs
in memory or reliably dump and investigate REE memory
without interference from untrusted OSs.

3.2 Attack Model

We assume that both the TEE vendor and the client are
not malicious and that they trust one another. In addition,
only the applications created by an authorized client can be
loaded onto the TEE. This can be achieved through appli-
cation signing and verification. As a result, malware cannot
be deployed in the TEE through an ordinary TEE applica-
tion deployment mechanism. However, the TEE application
might contain vulnerabilities. Therefore, an attacker can
compromise a TA through a maliciously crafted input. Once
the TA is compromised, the attacker can further attempt to
take control over higher-privileged TEE software, such as a
secure OS [31]. On the other hand, TEE attacks that exploit
hardware vulnerabilities, such as Rowhammer [36], Spectre
[37], and VoltJockey [38], are not considered. In addition, we
assume that the device is equipped with an input-output
memory management unit (IOMMU) [39] and is properly
configured. Therefore, direct memory access (DMA) attacks
[40] also fall outside the scope of our attack model.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 4

4 SYSTEM DESIGN

4.1 Overview

4.1.1 Usage Model

To ensure that only the trusted TEE clients use 3rdParTEE,
we depend on the public key infrastructure (PKI), which is
prevalently used to secure mobile device services, such as
the digital right management (DRM). In other words, we
assume that the client registers their public key to the TEE
vendor. The vendor then saves the hash of the public key in
the TEE. This is the sole involvement of the TEE vendor in
using 3rdParTEE. To run the client-provided kernel module,
the module developer first signs the hash of the module
using a private key, which is a pair of registered public keys.
The public key is also delivered to the device along with the
signed hash. Before loading the kernel module, 3rdParTEE
first verifies the integrity of the public key using the stored
hash in the TEE. It then checks the integrity of the kernel
module by comparing the newly calculated hash with the
decrypted hash using the public key.

Fig. 2: Design of 3rdParTEE. In the REE, the client application
transfers a kernel module to the TEE and requests a shielded
execution. In the TEE, the trusted dispatcher verifies the in-
tegrity of the module and invokes a shielded module loader.
The loader configures the memory firewall and the sandbox
to securely execute the module and preserve the TEE security,
respectively.

4.1.2 Design

3rdParTEE consists of two parts: the REE and the TEE. For
3rdParTEE, the REE part has three components: a loader, a
client’s kernel module, and a TrustZone kernel driver. The
loader simply reads the entire kernel module as a file stream
and writes it to the memory. Next, it communicates with
the TrustZone kernel driver to send a request to the TEE
part of 3rdParTEE to verify and execute the module. In the
TEE part, 3rdParTEE first verifies the integrity of the kernel
module, as previously mentioned. It then maps the module-
loaded region to the TEE and configures some defensive
facilities to ensure the security of the module as well as that
of the existing TEE components. Finally, it starts running
the kernel module in an isolated manner, which is referred
to as a shielded kernel module. Further details regarding the
design of 3rdParTEE are presented in the following sections.

4.2 REE Components

We aim to enable IoT service providers (TEE clients) to
deploy their kernel modules on-demand and securely run
them under TrustZone protection without hampering the se-
curity of the TEE. Additionally, 3rdParTEE attempts to min-
imize developers’ efforts when building TAs that generally
require the verification and separation of the applications’
security critical logic. It also attempts to implement such
applications without using specific TEE vendor-provided
APIs. The REE components required to accomplish this goal
are described in the following sections.

4.2.1 Shielded Kernel Module
Developers can create their kernel modules running as
shielded kernel modules for IoT service and device main-
tenance purposes, thereby benefiting from 3rdParTEE. For
example, a module can urgently patch the kernel text re-
gion in memory to fix a bug without replacing the entire
kernel image and rebooting the device. Generally, under the
condition that the text region is enforced to be immutable
owing to the protection provided by the TEE-based memory
protection solutions [15], [19], this patching operation may
require TEE-vendor intervention to update the protected
memory with TEE privileges. However, because 3rdParTEE
enables running the client’s module with TEE privileges, the
TEE vendor’s intervention is not required. In addition, the
module is isolated and shielded from untrusted OSs dur-
ing its execution. Therefore, memory inspection operations,
such as dumping REE memory for forensic analysis, can be
conducted reliably without an attacker’s interference.

The development practice of the shielded kernel module
is similar to that of a normal Linux LKM, which also
contributes to minimizing the development effort and com-
plexity that stem from the fact that the REE and the TEE
use different APIs. In other words, the shielded kernel
module is developed using normal Linux kernel symbols
that allow for the shielded kernel module’s tasks, such
as inspecting kernel data structures. One minor difference
between the general device driver and the shielded kernel
module is that the shielded kernel module is self-contained
and runs without interacting with the user process. Thus,
the shielded kernel module does not use kernel APIs, such
as copy_from_user and copy_to_user. To check the integrity
of the shielded kernel module, a checksum is generated. We
obtain a hash of the module based on SHA256 and sign
it using the developer’s private key. This signed hash is
delivered to the TEE part of 3rdParTEE together with the
request for executing the shielded kernel module.

4.2.2 3rdParTEE Client Application
The 3rdPartEE client application (CA) is a 3rdParTEE com-
ponent that triggers the execution of a shielded kernel
module. The CA handles three input arguments: the path of
the shielded kernel module image, the entry point (function
name), and the signed hash of the module. It first loads
the shielded kernel module image as a file stream. The
starting address of the loaded kernel module, the size of
the module, the entry point, and the signed hash are packed
as a message to the TEE using the TEE APIs. It then in-
vokes an inter-processor interrupt (IPI) to turn off the other

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 5

cores. By doing so, we can prevent the time-of-check-to-
time-of-use (TOCTTOU) attack that abuses race conditions
between multiple cores. In particular, this approach aims to
reliably conduct the module’s tasks, such as REE memory
inspection, by preventing potentially malicious cores from
hiding the attacker’s footprint (e.g., the timely restoration
of manipulated kernel objects before inspection). Finally,
the CA opens the TrustZone kernel driver to deliver the
message to 3rdParTEE on the TEE side.

4.2.3 TrustZone Kernel Driver
The packed message created by the CA is copied by the
TrustZone kernel driver and sent to the TEE part of 3rd-
ParTEE. Specifically, the TrustZone kernel driver executes
the SMC instruction that switches the CPU mode to the
monitor mode. The handler code running in the monitor
mode verifies the request and delivers it to 3rdParTEE.
Although the OS kernel is untrusted, using the TrustZone
kernel driver is unavoidable because the CPU’s mode switch
to the TEE is conducted by executing the privileged SMC
instruction. Instead of implementing the TrustZone kernel
driver from scratch, we reuse the driver provided by the
TEE vendor. In our PoC, we leverage the Sierraware TEE
and its TrustZone kernel driver. For production devices,
the TrustZone kernel driver provided by a specific TEE
vendor will be utilized. As mentioned previously, because
the TrustZone kernel driver resides in the REE, it can be
compromised. Therefore, the request for the execution of
the shielded kernel module can be ignored, i.e., denial of
service (DoS) attack. In addition, a fabricated value can
be returned instead of the actual result of the execution
of the shielded kernel module. For instance, the attacker
can attempt to deceive the remote administrator of an IoT
service, i.e., the remote attester, by always returning the
normal state of the device instead of the actual inspection
result of the shielded kernel module. However, such attacks
can be easily hampered by signing the result with a device
secret key, which can only be accessed in the TEE, and thus,
by 3rdParTEE as well.

4.3 TEE Components
The request for the execution of the shielded kernel module
is handled by the TEE components of 3rdParTEE. The main
roles of the TEE components include shielded kernel mod-
ule initialization, memory firewall configuration, sandbox
activation, and module dispatching.

4.3.1 Trusted Service Dispatcher
The trusted service dispatcher is a TA, which is a coun-
terpart of the 3rdParTEE CA. It receives and handles the
request, i.e., the packed message from the CA, for the
execution of the shielded kernel module. The dispatcher first
parses the message to obtain the kernel module’s address
and size. It then allocates memory in the sandboxed TEE
region and copies the third-party kernel module image to
that region based on the size information of the module.
The sandbox is introduced to protect the TEE from the
third-party kernel module (Section 4.3.4). The hash of the
copied module is verified using a signed hash from the CA.
After verifying the hash, the dispatcher invokes the shielded

module loader (Section 4.3.2) to initialize and execute the
shielded kernel module. The shielded kernel module’s ad-
dress in the sandbox and entry point is delivered as an
argument for the shield module loader.

4.3.2 Shield Module Loader

The shielded module loader, which is a modified version of
the ELF loader, performs general operations, such as parsing
the ELF header, linking kernel symbols, and loading each
memory segment, to appropriately execute the shielded
kernel module. Note that the kernel symbol information
is needed because the shielded kernel module is compiled
using the symbols, and it refers to them during execution.
The symbol information is transferred to the TEE as part
of a secure boot chain. Therefore, its integrity is preserved.
However, simply loading the kernel symbol information in
the TEE is not sufficient to run the shielded kernel module.
This is because the shielded kernel module may invoke the
REE OS kernel’s APIs whose addresses are yet to be mapped
in the TEE page tables.

Therefore, memory mapping to OS APIs should be cre-
ated afresh in the TEE. Instead of traversing and copying
every entry in the OS page tables to the TEE page tables,
we revisit the ARM virtual memory system features, specif-
ically, the TTBRs and the TTBCR. The key idea is to use
one of the two TTBRs to reference the base address of the
REE OS page table. We configure TTBR1 to map the REE
OS region to the address space of the TEE. As a result, the
shielded kernel module mapped in the TEE can seamlessly
access the OS APIs without redundant memory mapping
procedures that may incur complex page table management
and performance overhead. On the other hand, TTBR0 is
utilized for the virtual memory mapping of the TEE as its
original usage.

Figure 3 depicts the setting for memory translation when
this approach is applied. In the REE, TTBR0 is used to access
the entire virtual address space for the REE. Each time the
monitor mode is entered for the execution of the shielded
kernel module, it saves the value of TTBR0 of the REE. After
that, TTBR1 of the TEE is newly configured with the saved
value, which is the copy of TTBR0 for the REE. Additionally,
the virtual memory setting for the TEE is reconfigured using
the TTBCR. Specifically, the N bits of the TTBCR in the TEE,
which are used to configure how TTBRs are used, are set to
001b, i.e., 001 in binary. This configures the virtual memory
addresses that range above 0x80000000 to be translated
by referencing TTBR1 and those below using TTBR0. As
mentioned previously, because TTBR1 currently contains
the value of TTBR0 of the REE, the TEE virtual addresses
above 0x80000000 are mapped to the REE. To this end, we
also recompile the TEE software using a new configuration
that enforces the TEE to explicitly be mapped in the virtual
addresses that range from 0x00000000 to 0x7fffffff.

This approach has several advantages. First, we can
minimize the performance overhead because the need to
traverse and manage the page table is exempted. Further
discussion on the performance benefits is presented in Sec-
tion 6.2.2. Additionally, it allows the shielded kernel module
that obtains TEE privileges for invoking OS APIs with their
original symbol addresses. Finally, switching the TTBR on

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 6

every entry to the TEE enables a fresh view of the current
kernel context.

Fig. 3: The non-secure TTBR0 for the OS is copied to the secure
TTBR1 to map the OS region. The TEE and sandbox are mapped
using the secure TTBR0. For the use of two TTBRs, TTBCR.N is
set.

4.3.3 Memory Firewall

The attacker cannot directly influence module execution
because the shielded kernel module runs in the TEE. For
example, the module text as well as the execution con-
text in the stack and heap cannot be manipulated during
module execution. However, the attacker can still affect the
result of the execution of the shielded kernel module by
manipulating the status of target inspection objects in a
timely manner. For instance, a malicious core in the non-
secure state can conceal the attack footprint in the kernel
immediately before the shielded kernel module runs in the
secure state (TEE). To address this issue, as shown in Section
4.2.2, we first temporarily stop any core except the one
that runs the shielded kernel module. However, because the
IPI for stopping other cores depends on the execution of
the kernel API, which can be ignored by the attacker, this
approach does not reliably prevent the threat.

Therefore, the reliable measurement of the shielded ker-
nel module should not solely depend on this approach,
which simply freezes other cores. Therefore, we utilize the
TZASC to prevent malicious cores from disturbing the result
of the shielded kernel module. As described in Section 2.1,
the TZASC performs access control in the physical memory
regions based on the CPU’s security state. For example, the
access permissions of the physical memory region allocated
to the TEE are accessible only when the CPU is in the secure
state. On the other hand, the REE region can be set to be
accessible regardless of CPU states to allow the software
running in the TEE to access the REE, which enables the
creation of a shared memory for a communication channel
between the environments or emulates security critical op-
erations of the OS in the TEE [15].

In our design of 3rdParTEE, we dynamically reconfigure
the TZASC before executing the shielded kernel module
such that the entire physical region allocated to the REE is
not accessible by cores in the non-secure state. By doing so,
we can ensure that the shielded kernel module and kernel
APIs are not accessible by the malicious cores running in the
non-secure state, even if the attacker blocks the IPI requests
for stopping them. Note that because the core running the
shielded kernel driver is in a secure state, it can still access
the entire physical memory, and thus, seamlessly execute
the module. This dynamic configuration of the TZASC is
straightforward because the physical memory regions for
the REE and the TEE are already defined and configured

at boot time. Thus, redefining the regions is not required.
We simply reset the REGION_ID_ACCESS_<n> register of
the TZASC to block the read and write accesses to the REE
region from the cores in a non-secure state.

4.3.4 Sandbox for Shielded Execution

As discussed in Section 3.2, we assume that the client (the
IoT service provider) is not malicious and is trusted by the
TEE vendor. Therefore, the shielded kernel module devel-
oped by the client does not explicitly perform malicious
operations. Nevertheless, the shielded driver’s vulnerability
or unintended access to the TEE owing to a programming
error should be considered because these aspects can be
abused by the attacker to compromise the TEE. For instance,
the attacker might exploit the shielded kernel module to
learn the internal workings of the TEE. This cannot be gen-
erally fulfilled through static analysis, because the TEE OS
and firmware images are generally provided as encrypted
binaries. However, because they are decrypted in the TEE at
runtime, the attacker can abuse the shielded kernel module
privileges to infer the fruitful information of the TEE.

1 //...(Omitted)...
2 LOOP:
3 mov x1,#TEEADDR //Get the TEE addr.
4 msr DBGWVR0_EL1,x1 //Set the watchpoint
5 mov x2,#TEEADDR //Get the TEE addr.
6 cmp x1,x2 // Validate the set value
7 b.ne LOOP //If invalid, loop back
8 // ...(Omitted)...

Listing 1: Validation of watchpoint setting. Note that the size of
watchpoint monitoring is configured in the watchpoint control
register (DBGWCR), which is omitted in the code snippet.

To address this issue, 3rdParTEE adopts a watchpoint-
based memory isolation technique [28] to build a sandbox
for the shielded kernel module. We first reserve part of the
TEE memory, which is 1 GB in our implementation, as the
sandbox region. Next, in the shielded kernel module initial-
ization phase, this reserved region is leveraged for module
allocation. Before executing the module in the sandbox, we
configure the watchpoint to monitor any access outside
the sandbox where other TEE software resides. In other
words, watchpoint-based read and write access monitoring
is activated so that escaping to the TEE generates an excep-
tion. Additionally, the memory allocation for the stack and
the heap is conducted using the memory in the sandbox.
Once the module completes its execution, the watchpoint
is reconfigured to make the TEE region accessible again.
Because the watchpoint configuration instructions are acces-
sible in the sandbox, the attacker might try to abuse them
to manipulate the configuration. To prevent this, we ensure
that the watchpoint configuration instructions are adhered
to through verification logic that checks the correctness
of the configuration. As shown in Listing 1, this verifi-
cation is straightforward because the watchpoint should
always be configured using constant values, i.e., the non-
sandboxed region’s start address and size. Note that despite
the watchpoint-based protection, the outside of the sandbox
region is still executable. Thus, the attacker might attempt
to divert the control flow to the non-sandboxed region to
leverage useful TEE libraries and achieve a successful attack.
However, we expect this to be difficult because the internal

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 7

layout of the TEE cannot be dynamically or statically ana-
lyzed. In particular, the encrypted TEE software prevents
static analysis, as mentioned previously. In addition, the
watchpoint-based sandbox hampers runtime information
leakage in the TEE layout. As a result, the attacker cannot
pinpoint the location of useful code chunks in the TEE.

5 IMPLEMENTATION

We implemented our PoC using an Arndale board equipped
with Cortex-A15 dual-core processors and 2 GB RAM. Linux
v4.4 and SierraTEE [41] were used as the building blocks
of the REE and the TEE, respectively. Note that SierraTEE
provides the TEE software components, such as secure OS,
as well as the TrustZone kernel driver and TEE libraries that
help the REE applications interact with the TEE. We attempt
to maximize the use of such TEE vendor-provided software
stacks to implement the REE components of 3rdParTEE
instead of implementing them from scratch. This is because,
as discussed in Section 3.2, we assume that the TEE vendor
and client trust one another, and the vendor is willing to
open part of the TEE to allow the client to maintain their
IoT services with safely escalated privileges. Additionally,
reusing the existing components contributes to minimizing
the unexpected vulnerabilities introduced by adding new
software components to the TEE.

In this regard, the change in the REE is minimal. For
the secure transmission of kernel symbols to the shielded
kernel module loader in the TEE, we added a TrustZone
driver invocation during the booting of the device. More
specifically, we lead the init process to create a TEE mes-
sage that contains the kernel symbol information, such as
the symsearch data structure, which consists of __start_-
__ksymtab and __stop___ksymtab. This information is then
linked to the shielded kernel module through the module
loader in the TEE. The 3rdParTEE CA is implemented using
SierraTEE libraries for opening and closing a session with
the trusted dispatcher, which packs a message and sends it
to the TEE.

On the other hand, the trusted dispatcher is added,
which is a new TA for communicating with the 3rdParTEE
CA, to the TEE. As described in Section 4.3.1, it receives and
parses the message from the CA, and it maps the module
image in the TEE sandbox using SierraTEE OS APIs. The
shielded kernel module loader is implemented as one of
the TEE OS services. Therefore, we create a new system
call for invoking the loader. The loader is implemented by
modifying the Linux ELF loader. In addition to loading the
shielded kernel module, it sets up the debug watchpoint to
restrict any illegitimate access to the TEE by escaping from
the sandbox. Because the starting address of watchpoint
monitoring should be aligned with the size of monitoring
[29], we simply divide the virtual memory for the TEE into
two regions with the same size, and we assign the higher
half to the sandbox. Specifically, virtual addresses ranging
from 0x0 to 0x3fffffff and from 0x40000000 to 0x7ffffffff are
assigned to the TEE and the sandbox, respectively (note that
virtual memory from 0x80000000 is assigned to link the REE
kernel symbols). The TZASC must also be set up by the
loader for the memory firewall before executing the shielded
kernel module. Unfortunately, our low-end development

board does not fully provide all the TrustZone components.
Therefore, we omit this configuration. Note that this is not
the case for commercial devices that implement TrustZone-
based TEE because the TZASC is an essential component for
memory isolation. Thus, applying 3rdParTEE to commercial
devices is still feasible. Finally, similar to other architec-
tures, ARM separates the page permissions between the
user and the kernel. Therefore, the mapped REE kernel
region for linking the kernel APIs to the shielded kernel
module is intrinsically only accessible (executable) through
kernel privileges. As a result, the shielded kernel module is
scheduled to run with a secure kernel privilege.

6 EVALUATION

We first perform a security analysis on 3rdParTEE in terms
of preserving the TEE security as well as protecting the
shielded kernel module. The performance of 3rdParTEE is
also evaluated by running three example shielded kernel
modules, which check the kernel integrity, patch the system
call table, and traverse kernel data structures.

6.1 Security Analysis
The primary goal of 3rdParTEE is to ensure the secure
execution of third-party kernel modules. Thus, we first
discuss how several attack vectors for shielded execution
are accomplished. In addition, because the shielded kernel
module runs with escalated privileges, we show how the
security of existing TEE components is protected from the
exploitation of vulnerabilities in the shielded kernel module.

6.1.1 Attack Against Shielded Module Execution
In this section, we assume that the attacker’s goal is to
hinder the IoT device owner’s management of the device.
Examples of such management operations include the ur-
gent patching of the kernel memory and measuring the ker-
nel object integrity. Such operations are conducted through
the shielded kernel module. Therefore, compromising the
shielded kernel module is a viable approach for achieving
the attacker’s goal. On the other hand, the attacker can
control the factors that affect the results of module execution
without directly compromising the shielded kernel module.
For example, the system status can be transiently restored
before being verified by a shielded kernel module.

Compromising the shielded kernel module execution.
The binary in the device storage or loaded module image
in memory can be manipulated. This can be prevented
by comparing the hash of the loaded kernel module with
the precomputed one that is signed using the shielded
module provider’s key. By considering the time-of-check-to-
time-of-use (TOCTTOU) attack that attempts to manipulate
the image between verification and execution, 3rdParTEE
copies and verifies it in the TEE.

Because the shielded kernel module is linked to the ker-
nel APIs, compromising the APIs can result in the shielded
kernel module’s malfunction. However, this also requires
the attacker to bypass additional security facilities, such as
real-time kernel protection, which is widely deployed in
commercial devices and is also adopted in our work. The
kernel text and data are essentially enforced to be read-
only through the RKP. Therefore, manipulating the kernel

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 8

APIs is not achievable. Diverting the control flow (e.g., the
kernel ROP) can possibly bypass the RKP [15]. To address
this attack, numerous approaches have been proposed to
ensure control flow integrity [42], [43], [44], [45], [46], [47],
[48], [49], [50]. We expect such defenses to complement the
operations of 3rdParTEE.

The shielded kernel module may contain vulnerabilities
that can be exploited by an attacker. Considering the fact
that the crafted input exploits vulnerabilities, the kernel
module can be developed as a self-contained task that
fulfills the required operations without taking arguments.
In contrast, enabling the argument-taking feature of the
shielded kernel module may increase the reusability of
the deployed module. For example, the urgent patching
of the kernel text might require updating different mem-
ory regions depending on the vulnerability. To prevent
the attacker from abusing this aspect to bypass the ker-
nel integrity protection approaches [51], the invocation of
the module should be restricted to the module owner or
remote attester. To achieve this, signing and verifying the
arguments using a secret key can be a viable option, similar
to verifying the shielded kernel module.

Interfering communication channel. 3rdParTEE aims to
provide an approach for securely running the IoT device
owner-provided kernel module that performs device man-
agement operations. For instance, remote attestation can be
performed, with the dumping of device memory as the mea-
surement result. Even if the measurement is securely created
through the shielded kernel module, additional operations,
such as loading the module and sending the measurement
results, are mediated by the untrusted REE OS. Thus, the
attacker may attempt to compromise such operations in
the REE. For instance, the measurement result can be ma-
nipulated before being sent to the remote administrator to
conceal the attack footprint. However, preventing this attack
is straightforward. Because the measurement is generated
in the TEE, it can be safely signed using a device secret key,
which is only accessible in the TEE.

Manipulating system status. If the aim of the shielded
kernel module is to measure the system status, the attacker
might transiently restore the system status to hide any
footprint before invocation of the shielded kernel module.
For example, the privilege of a malicious process that was
escalated to the root can be deprivileged before the shielded
kernel module detects it. In our current prototype of 3rd-
ParTEE, the module is synchronously invoked by the client
application that runs in the untrusted REE. Thus, if the
attacker already compromises part of the control flow for
entering the TEE from the client application, the status can
be restored in a timely manner. Therefore, the measurement
result will not reflect actual system states with the presence
of a malicious process. This problem can be resolved by
hardening the mechanism of the shielded kernel module
invocation. For instance, once the shielded kernel module
is successfully loaded in the TEE, it can be scheduled to
run periodically at random intervals. The attacker might
abuse the multi-core environment to manipulate the system
status by winning the race condition between the cores. This
attack is prevented by activating the memory firewall, which
blocks any memory access from malicious cores.

6.1.2 Undermining the TEE Security
Because the shielded kernel module runs with the TEE
privilege, it can result in breaking the TEE security once
the module is compromised. As discussed in Section 3.2,
the shielded kernel module possibly contains a vulnerability
that can be exploited by the attacker. If the write-what-
where vulnerability of the shielded module is exploited, the
attacker may attempt to tamper with the TEE as well as
the shielded kernel module. Additionally, the attacker may
also attempt to execute any TEE functions by hijacking the
control flow. Fortunately, the attacker’s ability is limited to
compromising the module in the presence of 3rdParTEE.
In other words, owing to the sandboxing approach, the
attacker cannot read or write the TEE region. Any attempt
to access the TEE from the compromised module generates
a watchpoint exception that is trapped by the predefined
exception handler. The remaining option for an attacker
is disabling the watchpoint or remapping the exception
handler. These operations require the execution of priv-
ileged instructions that configure the watchpoint or the
vector base address register (VBAR). Because we assume
the deployment of RKP [15] that sanitizes the OS to remove
all the privileged instructions from the dynamically loaded
kernel modules and kernel text, the attacker cannot find
desirable instructions for a successful attack. Because the
TEE region is still executable, the attacker diverts the control
flow to execute such instructions in the TEE. We expect
that this is not readily achievable because commercial TEE
software is not open to the public, and thus, it cannot be stat-
ically analyzed. In addition, the watchpoint-based sandbox
naturally ensures that the TEE region is execute-only [52],
[53], which prevents the attacker from dynamically finding
useful instructions at runtime.

Finally, for performant introspection from the shielded
kernel module, we reuse the OS page table (Section 4.3.2).
This can be an attack vector that compromises the TEE. In
particular, the attacker manipulates the page table to map
malicious kernel APIs instead of normal ones. The shielded
module may then execute malicious kernel APIs that disable
the protection enforced by 3rdParTEE. Although it is a
crucial attack vector, it is also essentially prevented by the
presence of the RKP because the page table is a critical
kernel object that is strictly protected by the RKP. In other
words, any update of the page table is verified and emulated
by the RKP. Therefore, even the compromised OS cannot
manipulate it.

6.2 Performance
6.2.1 Inter world communication
We first measure the round-trip time between the CA and
the shielded kernel module. Because this aims to evaluate
the pure latency required for communication, the shielded
kernel module does nothing (executes a dummy function).
Additionally, the module is already loaded and mapped in
the TEE. As shown in Table 1, the round-trip time for calling
a shielded kernel module takes 258.72 µs. In our analysis,
201.71 µs and 57.01 µs were taken in the REE and the TEE,
respectively. Specifically, the TEE API execution that uses
the ioctl system call to send a request message to the TEE
is the major reason behind the latency in the REE. Note

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 9

TABLE 1: Latency of inter-world communication. The REE la-
tency includes the time for the ioctl system call and its handling.
The latency for the TEE is incurred by switching CPU modes
and invoking the shielded module with no operation.

REE TEE Overall
201.71µs (77.9%) 57.01µs (22.1%) 258.72µs

that the message contains the ID of the preloaded shielded
kernel module, and the time required to create the message
is not included in the measurement. On the other hand, the
latency for the TEE (57.01 µs) is incurred from switching
environments and dispatching a shielded kernel module
that simply runs a dummy function.

6.2.2 Kernel Memory Mapping and Introspection
.

Improving the performance by reusing the OS page
table, as illustrated in Section 4.3.2, is also evaluated. This is
conducted by accessing the kernel object from the shielded
kernel module. In particular, we compare the latencies for
accessing the kernel region using two different approaches:
(1) reusing the page table (2) and creating the mapping to
the kernel in the TEE page table. We ran five tests with
access sizes ranging from 4 bytes to 20 bytes. Additionally,
the granularity of the memory access is 4 bytes. We managed
to ensure that each 4 bytes reside in different kernel pages.
Therefore, the access to each 4 bytes requires the creation
of new page table entries. We ran each case 100 times, and
the latency was measured using the performance monitor
cycle count register (PMCCNTR). Figure 3 shows the results.
Reusing the OS page table took 87 cycles regardless of the
memory access size. However, the latency for the approach
with page table update linearly increases depending on the
accessed memory size, from 324 cycles with 4 bytes to 1788
cycles with 20 bytes. This is because creating page table
entries requires more operations, such as traversing the
kernel page tables for virtual to physical memory translation
of the accessed memory, creating new page table entries,
and flushing the TLB cache after updating the page tables.
In contrast, our approach solely requires reconfiguring the
TTBCR and the TTBR1 to reuse the OS page table. It is
also worth reiterating that the experiment only accesses the
maximum 20 bytes of kernel text. Hence, we expect that
if the sparse memory region is accessed, for example, by
traversing the dynamic kernel objects with various sizes, the
timing gap between the two approaches will significantly
increase as a result of the overhead of creating new page
mappings.

6.2.3 Shielded Third-party Module Execution
We evaluated the performance of shielded kernel modules
that are protected by 3rdParTEE. To this end, three modules
were created, and their performance was compared to that
of normal kernel modules that conduct same tasks. In partic-
ular, each module performs kernel hash calculation, system
call table updating, and kernel object traversing.

Kernel integrity check. Hash measurement is a funda-
mental operation for the remote management of IoT devices.
For instance, the integrity of running tasks or important
system files can be checked using their hash. We created

a kernel module that generates the hash of the kernel text
using SHA256. The module obtains the start address of the
kernel and its size using the _etext and _stext kernel symbols.
It is then loaded in the TEE and runs as a shielded kernel
module. Additionally, we loaded the same module in the
REE as the normal kernel driver to evaluate the overhead re-
sulting from the adoption of 3rdParTEE. As shown in Figure
4, the overhead of running the shielded kernel module was
1.8%. This overhead is mainly incurred by the additional
operations of 3rdParTEE, such as copying the module to
the TEE, validating the hash of the module, and switching
between the environments for execution. According to our
analysis (Table 2, copying and validating the module with a
size of 109 KB was the major reason behind this overhead,
which took 4751 µs and 149 µs, respectively. On the other
hand, the primary task of the module, which is verifying the
kernel integrity using SHA256, took approximately 68 ms in
execution time.

System call table update. A shielded kernel module
that updates a system call table entry is created, and its
performance is evaluated. The system call table is a static
object whose integrity is protected by kernel integrity mon-
itors, such as the RKP. Thus, updating such objects is not
allowed using software with lower privileges than the RKP.
However, because our aim is to enable the IoT device owner
to urgently manage the device before the TEE vendor takes
action, the privilege of the module should be escalated. This
is essentially achieved by 3rdParTEE that runs the module
with TEE privilege. As mentioned previously, this escalation
requires additional operations, such as loading the module
to the TEE and validating its integrity. We observed an
overhead of 2.7% compared to that of the normal kernel
driver. In this experiment, the size of the module was 51 KB,
and it took 2242 µs to prepare the loading and validation of
the shielded execution.

Fig. 4: Shielded module performance compared to that of kernel
modules. A maximum overhead of 7.2% was observed through
dynamic object introspection.

Dynamic object inspection. An attacker who compro-
mises the OS can manipulate dynamic kernel objects to hide
the attack footprint. For instance, the pointer for reading the
function of the virtual file system (VFS), which is placed in
a kernel object, can be hooked to redirect it to a malicious
function that hides specific information, such as the network
connection to a malicious server. Thus, traversing the kernel
objects is a crucial feature for managing device security
because it enables checking the validity of the expected data
in the object. To measure the performance of such a task, we

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 10

TABLE 2: Time breakdown of three shielded modules and ratio to overall time.

Module size Loading Validation Execution Overall
Kernel integrity check 109 KB 4751µs (1.6%) 149µs (0.2%) 291274µs (98.2%) 296615µs
System call table hooking 51 KB 1562µs (1.9%) 680µs (0.9%) 79164µs (97.2%) 81406µs
Kernel object traversing 143 KB 3483µs (5.0%) 1893µs (2.8%) 64103µs (92.2%) 69479µs

Fig. 5: Owing to the exemption of traversing and configuring
page tables, and flushing the TLB, reusing the TTBR outper-
forms updating the page table, specifically when the number
of accessed pages increases (accesses with 4-byte granularity in
different pages).

created a shielded kernel module that traverses the proc_-
dir_entry data structures, which are linked to each other and
enables the searching of files in the /proc directory. Generally,
system information, such as networks, file systems, and
devices can be retrieved by referring to the files in the /proc
directory. We specifically find the object for the /proc/net/tcp
file and check its function pointer in the VFS read function
to determine whether its value is within the valid range of
the kernel text. Compared to the normal kernel driver that
performs the same task, the shielded module introduces an
overhead of 7.2%. Similar to the other two experiments, the
overhead was incurred owing to the additional operations
for protecting the module. As shown in Figure 4, this test
introduced the highest overhead among the three tests. This
is because the proportion of additional time required for
shielding the module is significantly higher than those of
other two tests. In particular, the size of the shielded kernel
module (143 KB) is the largest compared to other tests, but
the execution time is the shortest (64103µs). This results
in 3rdParTEE’s additional operations occupying a larger
portion (7.8%) in the module’s entire lifetime, and thus, it
introduces most of the overhead among the three tests (Table
2).

7 RELATED WORK

In this section, we introduce a line of work relevant to
TrustZone technology, including TrustZone application, at-
tack and defense, and opening the TrustZone for 3rd-party
usage.

7.1 Application of TrustZone
In academia, TrustZone-based TEE has been widely adopted
to build trustworthy services. For example, TrustOTP [13]
and fTPM [54] build a software-based one-time password
(OTP) and a trusted platform module (TPM) in the TEE,

respectively. TZ-RKP [15] and Sprobes [27] use TrustZone to
isolate kernel-integrity monitors from the untrusted kernel.
Ninja [55] utilizes TrustZone for stealthy malware analysis.
Finally, TrustZone is leveraged for the reliable control of
peripherals [56], [57], securing the IO [14], [58], [59], and
the reliable acquisition of memory [60]. Similarly, 3rdParTEE
also benefits from TrustZone in shielding the IoT device
owner-provided kernel module.

On the other hand, as an industry solution, Samsung
KNOX [19] implements TZ-RKP as part of its platform stack
to protect OS kernel integrity on 32-bit ARM architecture-
based mobile devices. In addition to protecting the kernel
static regions, the LKMs are verified to ensure that the
TZ-RKP is not bypassed. In other words, as illustrated in
Section 2.3, security-critical instructions are removed from
the kernel text to ensure the immutability of static regions,
and thus they should never be reintroduced in any kernel
region. Consequently, TZ-RKP verifies and sanitizes the
LKMs to ensure that any removed critical instructions do
not exist in the LKM. Note that this verification of the kernel
module aims to ensure the kernel integrity, not to protect
the module itself. We expect 3rdParTEE and TZ-RKP to be
complimentary. The verification mechanism of TZ-RKP can
be employed to minimize the vulnerabilities in the modules
that are shielded by 3rdParTEE.

7.2 TrustZone attack and defense

The security of TrustZone technology has been explored.
Researchers have shown that cache side channels can be
exploited to compromise the TrustZone-based TEE [61], [62],
[63], [64], [65]. Specifically, CITM illustrates how the security
of isolated execution environments can be broken when
they leverage memory that is shared with untrusted-OS
instead of being built in the TrustZone-protected memory.
Because the shielded kernel module is deployed and run
in the TrustZone-protected memory, 3rdParTEE is immune
to the CITM attack. CacheKit [66] utilizes the cache inco-
herence between the REE and TEE to hide malware from
the introspection conducted in the TEE. VoltJockey [38]
and CLKScrew [67] showed that fault injection attacks can
exfiltrate a secret from the TEE. Finally, the Boomerang
attack [51] and horizontal privilege escalation (HPE) [68] are
types of confused deputy attacks that abuse TrustZone to
attack REE OS and CAs. On the other hand, previous work
has also attempted to harden the TEE. SeCReT [69] proposed
a method to secure the communication channel between the
REE and TEE. Pager [70] enables the TEE OS and TAs to
run in TrustZone-protected SRAM. To secure the TEE from
the cache side channel attacks, secTEE [71] separates caches
between different TAs and cleans up the caches when the
CPU switches to the REE. Finally, PARTEMU [72] provides
an emulation environment for conducting a dynamic analy-
sis of TAs and determining their vulnerabilities.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 11

7.3 Openness of TrustZone
Approaches for improving third-party accessibility to the
TEE have been explored. PrivateZone [24], TFence [73], and
OSP [74] utilize hardware-assisted virtualization available
on ARM architecture to shield third-party-provided security
critical applications in the REE. TrustICE [26] and Sanctuary
[75] also protect applications running in the REE, but they
utilize the TrustZone component, TZASC, for their isolation.
Ginseng [76] protects secret data by ensuring that they are
placed only in registers, which is achieved through the
compiler technique and privileged services running in the
TEE. Contrary to the aforementioned systems, TrustShadow
[17] and on-board credentials (ObC) [25] directly run the
critical applications in the TEE by employing a lightweight
runtime system and emulation platform in the TEE, respec-
tively. Trusted language runtime (TLR) [77] ports the .NET
framework in the TEE to ensure the feasibility of mobile
application development.

Furthermore, several open TEE platforms have been
released, contributing to the prosperity of TEE-relevant re-
search. OP-TEE [78] is an open-source TEE platform that can
be ported to various development boards. SierraTEE [41],
wherein 3rdParTEE is implemented, supports not only the
commercial version but also the publicly available version
of TEE for developers. Open-TEE [79] is a software-based
virtual TEE environment that aims to improve efficiency
in developing and testing trusted applications. Those open
TEE platforms are built to satisfy the de-facto standard
of TEE, which is specified by GlobalPlatform (GP) [80].
Therefore, general TEE functionalities defined by GP specifi-
cations (e.g., isolating applications, creating secure storage)
are implemented in the open TEE platforms. However, the
core technique proposed in 3rdParTEE, which is shielding
a third-party kernel module by leveraging TEE, has never
been introduced by such open platforms and can be adopted
by them to improve the accessibility of the TEE. We further
discuss the adoptability and scalability of 3rdParTEE in
Section 8.

8 DISCUSSION AND FUTURE WORK

Scalability. The PoC of 3rdParTEE is implemented on
SierraTEE. However, because the core techniques of 3rd-
ParTEE leverage general hardware features available on
ARM architecture, we expect them to be readily employed
by other TEE platforms as well. For instance, the TZASC
leveraged for building the memory firewall (Section 4.3.3)
is generally available on devices that properly implement
the TrustZone-based TEEs. The debug watchpoint for the
sandbox implementation (Section 4.3.4) is also the general
hardware feature defined in 64-bit as well as 32-bit ARM ar-
chitectures. In the trusted service dispatcher (Section 4.3.1),
one of the TTBRs–the TTBR1 in a secure state–is used for
linking kernel symbols. Although the same set of TTBRs
is available regardless of whether the architecture is 32-bit
or 64-bit, both TTBR0 and TTBR1 are generally leveraged
to map the user and kernel spaces, respectively, on 64-
bit architecture. Therefore, additional engineering effort is
expected to port 3rdParTEE to the TEE platforms with 64-
bit ARM architecture. For example, we can reorganize the
virtual memory layout of the TEE so that both the user and

kernel spaces are mapped by using only the TTBR0. Finally,
as long as the mandatory hardware features are available,
minimal effort for software migration is expected because
contemporary TEE platforms follow the TEE standard speci-
fications. Improving the scalability of 3rdParTEE for various
TEE platforms has been set aside for our future work.

Hardening the TEE. 3rdParTEE provides a way to
shield a kernel module by hosting it in the TEE. Consid-
ering the vulnerability of the module and its exploitation,
watchpoint-based memory sandboxing is also proposed. As
illustrated in Section 4.3.4, this approach only enforces the
outside of the sandbox to be non-readable and non-writable;
unfortunately, it is still executable. Hence, preserving the
effectiveness of sandboxing requires that the layout of the
TEE platform not be exposed. By doing so, we can prevent
the attacker who hijacks the control flow from abusing the
useful instructions in the TEE. Satisfying this requirement is
feasible for the closed TEE platforms as long as their internal
layout is not revealed by accident [81]. However, open
TEE platforms that publicly open their source code might
be vulnerable to this attack. To address this, conventional
defensive measures such as address space layout random-
ization (ASLR) can be applied to the TEE. Temporarily
unmapping the TEE region or making it inexecutable by
configuring page table entries and hardware features [82]
before the execution of the shielded kernel module can be
adopted as well. We will further explore ways to harden the
TEE so that it is more immune to any attack that may abuse
3rdParTEE.

9 CONCLUSION

We designed and implemented 3rdParTEE to shield IoT
service providers’ kernel modules by benefiting from the
TEE but minimizing its impact on the TEE security. For
the reliable and secure execution of the shielded module,
3rdParTEE leverages the TZASC, which controls the mem-
ory region’s access permissions. To prevent the shielded
module from opening a new attack surface on the TEE,
a debug watchpoint-based sandbox was applied to the
shielded module execution. Owing to additional operations
for enabling such protection facilities, the shielded module
introduced more overhead compared to the conventional
kernel module execution. However, we observed only neg-
ligible and moderate overhead, with a maximum overhead
of 7% for traversing dynamic kernel objects. We expect the
design of 3rdParTEE to inspire further research on security
measures for increasing the safety of IoT devices.

ACKNOWLEDGMENTS

The authors would like to thank all the anonymous review-
ers for their valuable insights and feedback that helped us to
improve our paper. This work was supported by the Office
of Naval Research (ONR) through Award N00014-18-1-2661.
This work was also supported by Institute for Informa-
tion & communications Technology Promotion (IITP) Grant
funded by the Korea Government (MSIT) (No. IITP-2019-0-
01343, IITP-2019-0-01570, and IITP-2020-0-01840), National
Research Foundation (NRF) Grant funded by Korea Gov-
ernment (MSIT) (No. NRF-2020R1F1A1058305) and research
fund of Chungnam National University.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 12

REFERENCES

[1] (2021) Internet of things. [Online]. Available: https:
//www.ericsson.com/en/internet-of-things

[2] (2020) 50 sensor applications for a smarter world.
[Online]. Available: https://www.libelium.com/libeliumworld/
top-50-iot-sensor-applications-ranking/

[3] (2014) Increasing vending profitability with more
intelligent machines. [Online]. Available: https:
//www.intel.co.kr/content/www/kr/ko/intelligent-systems/
retail/ref-design-for-intelligent-vending-product-brief.html

[4] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok:
Security evaluation of home-based iot deployments,” in 2019 IEEE
symposium on security and privacy (sp). IEEE, 2019, pp. 1362–1380.

[5] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallit-
sis et al., “Understanding the mirai botnet,” in 26th {USENIX}
security symposium ({USENIX} Security 17), 2017, pp. 1093–1110.

[6] O. Çetin, C. Ganán, L. Altena, T. Kasama, D. Inoue, K. Tamiya,
Y. Tie, K. Yoshioka, and M. van Eeten, “Cleaning up the internet
of evil things: Real-world evidence on isp and consumer efforts to
remove mirai.” in NDSS, 2019.

[7] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin,
“Measurement and analysis of hajime, a peer-to-peer iot botnet,”
in Network and Distributed Systems Security (NDSS) Symposium,
2019.

[8] S. Soltan, P. Mittal, and H. V. Poor, “Blackiot: Iot botnet of high
wattage devices can disrupt the power grid,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 15–32.

[9] (2018) "hide and seek" becomes first iot botnet capable
of surviving device reboots. [Online]. Available: https:
//www.bleepingcomputer.com/news/security/hide-and-seek-
becomes-first-iot-botnet-capable-of-surviving-device-reboots/

[10] (2018) The 7 craziest iot device hacks. [Online]. Avail-
able: https://securityboulevard.com/2018/05/the-7-craziest-iot-
device-hacks/

[11] (2021) "setting new standards for cloud comput-
ing. [Online]. Available: https://www.arm.com/solutions/
infrastructure/cloud-computing

[12] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz:
Virtualizing arm trustzone,” in In Proc. of the 26th USENIX Security
Symposium, 2017.

[13] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: Transforming
smartphones into secure one-time password tokens,” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2015, pp. 976–988.

[14] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure online mobile
advertisement attestation using trustzone,” in Proceedings of the
13th annual international conference on mobile systems, applications,
and services, 2015, pp. 75–88.

[15] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen, “Hypervision across worlds: real-time kernel
protection from the arm trustzone secure world,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2014, pp. 90–102.

[16] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Preserving physical safety under cyber attacks,” IEEE Internet of
Things Journal, vol. 6, no. 4, pp. 6285–6300, 2018.

[17] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“Trustshadow: Secure execution of unmodified applications with
arm trustzone,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services. ACM,
2017, pp. 488–501.

[18] (2019) Guard your data with the qualcomm
snapdragon mobile platform. [Online]. Available:
https://www.qualcomm.com/media/documents/files/guard-
your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf

[19] (2018, May) Knox and arm trustzone.
[Online]. Available: https://kp-cdn.samsungknox.com/
c887e0a066f5598a1e9ecea2d68edbe1.pdf

[20] (2018) Your smartphone has a special security
chip. here¡¯s how it works. [Online]. Avail-
able: https://www.howtogeek.com/387934/your-smartphone-
has-a-special-security-chip.-heres-how-it-works/

[21] (2021) Secure platform. [Online]. Available: http://
www.trustonic.com/secure-platform/

[22] (2020) Arm mbed linux os. [Online]. Avail-
able: https://github.com/PelionIoT/mbl-docs/blob/v0.10/
Docs/introduction/introduction.md

[23] (2021) Mocana. [Online]. Available: https://www.mocana.com/
[24] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. B.

Kang, “Privatezone: Providing a private execution environment
using arm trustzone,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 797–810, 2016.

[25] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala, “On-board
credentials with open provisioning,” in Proceedings of the 4th Inter-
national Symposium on Information, Computer, and Communications
Security. ACM, 2009, pp. 104–115.

[26] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice:
Hardware-assisted isolated computing environments on mobile
devices,” in 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2015, pp. 367–378.

[27] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel
code integrity on the trustzone architecture,” Proceedings of the
Third Workshop on Mobile Security Technologies (MoST), 2014.

[28] J. Jang and B. B. Kang, “In-process memory isolation using
hardware watchpoint,” in 2019 56th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2019, pp. 1–6.

[29] (2018, May) Arm architecture reference manual armv8,
for armv8-a architecture profile. [Online]. Available: https:
//developer.arm.com/docs/ddi0487/latest/arm-architecture-
reference-manual-armv8-for-armv8-a-architecture-profile

[30] (2016) Samsung smart tv security solution gaia v1.0. [Online].
Available: https://www.commoncriteriaportal.org/files/
epfiles/%5BKECS-CR-16-08%5D%20Samsung%20Smart%20TV%
20Security%20Solution%20GAIA%20V1.0%20Certification%
20Report.pdf

[31] (2020) Secure iot development with kinibi-m. [Online]. Available:
https://www.trustonic.com/technical-articles/kinibi-m/

[32] (2020) Samsung teegris. [Online]. Available: https:
//developer.samsung.com/teegris/overview.html

[33] (2021) Qualcomm® trusted execution environment (tee)
v5.8 on qualcomm® snapdragon™ 865 security target lite.
[Online]. Available: https://www.tuv-nederland.nl/assets/files/
cerfiticaten/2021/08/nscib-cc-0244671-stlite.pdf

[34] (2020) Knox licenses. [Online]. Available: https://
docs.samsungknox.com/dev/common/knox-licenses.htm

[35] (2021) Using encryption and authentication to se-
cure an ultrascale/ultrascale+ fpga bitstream. [Online].
Available: https://www.xilinx.com/support/documentation/
application_notes/xapp1267-encryp-efuse-program.pdf

[36] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 361–372,
2014.

[37] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre at-
tacks: Exploiting speculative execution,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[38] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “Voltjockey: Breaching trust-
zone by software-controlled voltage manipulation over multi-core
frequencies,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 195–209.

[39] (2016) Arm system memory management unit architecture
specification. [Online]. Available: https://developer.arm.com/
documentation/ihi0062/dc/

[40] E.-O. Blass and W. Robertson, “Tresor-hunt: attacking cpu-bound
encryption,” in Proceedings of the 28th Annual Computer Security
Applications Conference, 2012, pp. 71–78.

[41] (2017, May) Sierraware. [Online]. Available: https:
//www.sierraware.com/open-source-ARM-TrustZone.html

[42] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM
Transactions on Information and System Security (TISSEC), vol. 13,
no. 1, pp. 1–40, 2009.

[43] M. Zhang and R. Sekar, “Control flow integrity for {COTS} bina-
ries,” in 22nd {USENIX} Security Symposium ({USENIX} Security
13), 2013, pp. 337–352.

[44] J. Criswell, N. Dautenhahn, and V. Adve, “Kcofi: Complete
control-flow integrity for commodity operating system kernels,”
in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp.
292–307.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

https://www.ericsson.com/en/internet-of-things
https://www.ericsson.com/en/internet-of-things
https://www.libelium.com/libeliumworld/top-50-iot-sensor-applications-ranking/
https://www.libelium.com/libeliumworld/top-50-iot-sensor-applications-ranking/
https://www.intel.co.kr/content/www/kr/ko/intelligent-systems/retail/ref-design-for-intelligent-vending-product-brief.html
https://www.intel.co.kr/content/www/kr/ko/intelligent-systems/retail/ref-design-for-intelligent-vending-product-brief.html
https://www.intel.co.kr/content/www/kr/ko/intelligent-systems/retail/ref-design-for-intelligent-vending-product-brief.html
https://www.bleepingcomputer.com/news/security/hide-and-seek-becomes-first-iot-botnet-capable-of-surviving-device-reboots/
https://www.bleepingcomputer.com/news/security/hide-and-seek-becomes-first-iot-botnet-capable-of-surviving-device-reboots/
https://www.bleepingcomputer.com/news/security/hide-and-seek-becomes-first-iot-botnet-capable-of-surviving-device-reboots/
https://securityboulevard.com/2018/05/the-7-craziest-iot-device-hacks/
https://securityboulevard.com/2018/05/the-7-craziest-iot-device-hacks/
https://www.arm.com/solutions/infrastructure/cloud-computing
https://www.arm.com/solutions/infrastructure/cloud-computing
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://kp-cdn.samsungknox.com/c887e0a066f5598a1e9ecea2d68edbe1.pdf
https://kp-cdn.samsungknox.com/c887e0a066f5598a1e9ecea2d68edbe1.pdf
https://www.howtogeek.com/387934/your-smartphone-has-a-special-security-chip.-heres-how-it-works/
https://www.howtogeek.com/387934/your-smartphone-has-a-special-security-chip.-heres-how-it-works/
http://www.trustonic.com/secure-platform/
http://www.trustonic.com/secure-platform/
https://github.com/PelionIoT/mbl-docs/blob/v0.10/Docs/introduction/introduction.md
https://github.com/PelionIoT/mbl-docs/blob/v0.10/Docs/introduction/introduction.md
https://www.mocana.com/
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://www.commoncriteriaportal.org/files/epfiles/%5BKECS-CR-16-08%5D%20Samsung%20Smart%20TV%20Security%20Solution%20GAIA%20V1.0%20Certification%20Report.pdf
https://www.commoncriteriaportal.org/files/epfiles/%5BKECS-CR-16-08%5D%20Samsung%20Smart%20TV%20Security%20Solution%20GAIA%20V1.0%20Certification%20Report.pdf
https://www.commoncriteriaportal.org/files/epfiles/%5BKECS-CR-16-08%5D%20Samsung%20Smart%20TV%20Security%20Solution%20GAIA%20V1.0%20Certification%20Report.pdf
https://www.commoncriteriaportal.org/files/epfiles/%5BKECS-CR-16-08%5D%20Samsung%20Smart%20TV%20Security%20Solution%20GAIA%20V1.0%20Certification%20Report.pdf
https://www.trustonic.com/technical-articles/kinibi-m/
https://developer.samsung.com/teegris/overview.html
https://developer.samsung.com/teegris/overview.html
https://www.tuv-nederland.nl/assets/files/cerfiticaten/2021/08/nscib-cc-0244671-stlite.pdf
https://www.tuv-nederland.nl/assets/files/cerfiticaten/2021/08/nscib-cc-0244671-stlite.pdf
https://docs.samsungknox.com/dev/common/knox-licenses.htm
https://docs.samsungknox.com/dev/common/knox-licenses.htm
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf
https://developer.arm.com/documentation/ihi0062/dc/
https://developer.arm.com/documentation/ihi0062/dc/
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.sierraware.com/open-source-ARM-TrustZone.html

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 13

[45] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity.” in NDSS, vol. 26, 2015, pp. 27–30.

[46] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi:
Cryptographically enforced control flow integrity,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, 2015, pp. 941–951.

[47] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for
embedded systems software,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 743–754.

[48] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-
flow integrity,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 1470–1486.

[49] M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity,” in 28th {USENIX} Security Sym-
posium ({USENIX} Security 19), 2019, pp. 195–211.

[50] D. Jung, M. Kim, J. Jang, and B. B. Kang, “Value-based constraint
control flow integrity,” IEEE Access, vol. 8, pp. 50 531–50 542, 2020.

[51] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens,
R. Wang, A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna,
“Boomerang: Exploiting the semantic gap in trusted execution
environments,” in Proceedings of the 24th Annual Network and
Distributed System Security Symposium (NDSS’17), San Diego, CA,
2017.

[52] S. Brookes, R. Denz, M. Osterloh, and S. Taylor, “Exoshim: Pre-
venting memory disclosure using execute-only kernel code,” in
Proceedings of the 11th International Conference on Cyber Warfare and
Security, 2016, pp. 56–66.

[53] Y. Chen, D. Zhang, R. Wang, R. Qiao, A. M. Azab, L. Lu, H. Vi-
jayakumar, and W. Shen, “Norax: Enabling execute-only memory
for cots binaries on aarch64,” in Security and Privacy (SP), 2017
IEEE Symposium on. IEEE, 2017, pp. 304–319.

[54] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fen-
ner, K. Kinshumann, J. Loeser, D. Mattoon et al., “ftpm: A software-
only implementation of a {TPM} chip,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 841–856.

[55] Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and
debugging on arm,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017.

[56] M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee, “Secloak: Arm
trustzone-based mobile peripheral control,” in Proceedings of the
16th Annual International Conference on Mobile Systems, Applications,
and Services, 2018, pp. 1–13.

[57] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and A.-R.
Sadeghi, “Regulating arm trustzone devices in restricted spaces,”
in Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, 2016, pp. 413–425.

[58] D. J. Sebastian, U. Agrawal, A. Tamimi, and A. Hahn, “Der-tee:
Secure distributed energy resource operations through trusted
execution environments,” IEEE Internet of Things Journal, vol. 6,
no. 4, pp. 6476–6486, 2019.

[59] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du,
“Truz-droid: Integrating trustzone with mobile operating system,”
in Proceedings of the 16th annual international conference on mobile
systems, applications, and services, 2018, pp. 14–27.

[60] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia, “Trustdump: Re-
liable memory acquisition on smartphones,” in Computer Security-
ESORICS 2014. Springer, 2014, pp. 202–218.

[61] H. Cho, P. Zhang, D. Kim, J. Park, C.-H. Lee, Z. Zhao, A. Doupé,
and G.-J. Ahn, “Prime+ count: Novel cross-world covert channels
on arm trustzone,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 441–452.

[62] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache stor-
age channels: Alias-driven attacks and verified countermeasures,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 38–55.

[63] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Ar-
mageddon: Cache attacks on mobile devices,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 549–564.

[64] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy:
Cache side-channel information leakage from the secure world on
arm devices.” IACR Cryptol. ePrint Arch., vol. 2016, p. 980, 2016.

[65] J. Wang, K. Sun, L. Lei, S. Wan, Y. Wang, and J. Jing, “Cache-in-
the-middle (citm) attacks: Manipulating sensitive data in isolated
execution environments,” in Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security, 2020, pp.
1001–1015.

[66] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, “Cachekit:
Evading memory introspection using cache incoherence,” in 2016
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2016, pp. 337–352.

[67] A. Tang, S. Sethumadhavan, and S. Stolfo, “{CLKSCREW}: expos-
ing the perils of security-oblivious energy management,” in 26th
{USENIX} Security Symposium ({USENIX} Security 17), 2017, pp.
1057–1074.

[68] D. Suciu, S. McLaughlin, L. Simon, and R. Sion, “Horizontal
privilege escalation in trusted applications,” in 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020.

[69] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret:
Secure channel between rich execution environment and trusted
execution environment,” in Proceedings of the 22nd Annual Network
and Distributed System Security Symposium (NDSS’15), San Diego,
CA, 2015.

[70] (2021) Pager. [Online]. Available: https://optee.readthedocs.io/
en/latest/architecture/core.html#pager

[71] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “Sectee: A
software-based approach to secure enclave architecture using tee,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1723–1740.

[72] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, and M. Grace,
“{PARTEMU}: Enabling dynamic analysis of real-world trustzone
software using emulation,” in 29th {USENIX} Security Symposium
({USENIX} Security 20), 2020, pp. 789–806.

[73] J. Jang and B. Byunghoon Kang, “Retrofitting the partially priv-
ileged mode for tee communication channel protection,” IEEE
Transactions on Dependable and Secure Computing, 05 2018.

[74] Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek,
“Hardware-assisted on-demand hypervisor activation for effi-
cient security critical code execution on mobile devices,” in 2016
USENIX Annual Technical Conference (USENIX ATC 16), 2016.

[75] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Sanc-
tuary: Arming trustzone with user-space enclaves.” in NDSS, 2019.

[76] M. H. Yun and L. Zhong, “Ginseng: Keeping secrets in registers
when you distrust the operating system.” in NDSS, 2019.

[77] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone
to build a trusted language runtime for mobile applications,”
in Proceedings of the 19th international conference on Architectural
support for programming languages and operating systems. ACM,
2014, pp. 67–80.

[78] (2017, May) Linaro: Op-tee. [Online]. Available: https://www.op-
tee.org/

[79] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan,
“Open-tee – an open virtual trusted execution environment,” 2015
IEEE Trustcom/BigDataSE/ISPA, Aug 2015. [Online]. Available:
http://dx.doi.org/10.1109/Trustcom.2015.400

[80] (2017, May) Technology document library. [Online]. Available:
https://globalplatform.org/specs-library/?filter-committee=tee

[81] (2018, Feb.) Key apple iphone source code exposed on
github in ‘biggest leak in history’. [Online]. Available: https:
//beebom.com/apple-iboot-iphone-source-code-leaked-github/

[82] J. Jang and B. B. Kang, “Selmon: reinforcing mobile device security
with self-protected trust anchor,” in Proceedings of the 18th Interna-
tional Conference on Mobile Systems, Applications, and Services, 2020,
pp. 135–147.

Jinsoo Jang received the B.S. degree from Ajou
University and the M.S. and Ph.D. degrees in
information security from the Korea Advanced
Institute of Science and Technology (KAIST). He
is currently an Assistant Professor with the De-
partment of Computer Science and Engineering,
Chungnam National University (CNU). He has
been working on systems security areas, par-
ticularly in hardening the trusted execution envi-
ronment (TEE) and leveraging general hardware
features to build various defensive measures.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

https://optee.readthedocs.io/en/latest/architecture/core.html#pager
https://optee.readthedocs.io/en/latest/architecture/core.html#pager
https://www.op-tee.org/
https://www.op-tee.org/
http://dx.doi.org/10.1109/Trustcom.2015.400
https://globalplatform.org/specs-library/?filter-committee=tee
https://beebom.com/apple-iboot-iphone-source-code-leaked-github/
https://beebom.com/apple-iboot-iphone-source-code-leaked-github/

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3152555, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 14

Brent Byunghoon Kang (Member, IEEE) re-
ceived the BS degree from Seoul National Uni-
versity, Seoul, South Korea, the MS degree from
the University of Maryland, College Park, Mary-
land, and the PhD degree in computer science
from the University of California at Berkeley,
California. He is currently a professor with the
Graduate School of Information Security, Ko-
rea Advanced Institute of Science and Technol-
ogy (KAIST). Before KAIST, he has been with
George Mason University as an associate pro-

fessor. He has been working on systems security area including botnet
defense, OS kernel integrity monitors, trusted execution environment,
and hardware assisted security. He is currently a member of the USENIX
and ACM.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 07,2022 at 10:31:11 UTC from IEEE Xplore. Restrictions apply.

