
EnclaveVPN: Toward Optimized Utilization of Enclave Page
Cache and Practical Performance of Data Plane for

Security-Enhanced Cloud VPN
Jaemin Park

The Affiliated Institute of ETRI
Daejeon, Republic of Korea

jmpark@nsr.re.kr

Brent Byunghoon Kang∗
KAIST

Daejeon, Republic of Korea
brentkang@kaist.ac.kr

ABSTRACT
A cloud Virtual Private Network (VPN) is an essential infrastruc-
ture for tenants to connect their on-premise networks with a cloud
network. However, tenants are often reluctant to adopt the cloud
VPN because of security concerns, such as key disclosure, imper-
sonation, and packet sniffing. Software Guard Extensions (SGX) is
a good candidate to address the security concerns because it can
create enclaves in the isolated memory (i.e., Enclave Page Cache
(EPC)) to protect security-sensitive code and data from malicious
access. In this paper, we propose EnclaveVPN, which supports a
security-enhanced IPsec gateway using SGX with optimized EPC
utilization and practical performance of the data plane. EnclaveVPN
leverages enclaves to manage cryptographic keys and execute cryp-
tographic operations for the IPsec gateway. EnclaveVPN allows
only encrypted packets to be transmitted within and to/from the
cloud network and presents features for optimizing EPC utilization
and minimizing overhead in the data plane. We implemented a
prototype on a real SGX v1.0 machine (Xeon E-2286M 2.40GHz
8-core CPU). The experiment and benchmark results showed that
EnclaveVPN saved the EPC up to 62.5% and achieved approximately
87% of the data plane performance of the non-SGX IPsec gateway.

CCS CONCEPTS
• Security and privacy → Network security; • Networks →
Cloud computing.

KEYWORDS
SGX, Cloud VPN, IKE, IPsec
ACM Reference Format:
Jaemin Park and Brent Byunghoon Kang. 2023. EnclaveVPN: Toward Opti-
mized Utilization of Enclave Page Cache and Practical Performance of Data
Plane for Security-Enhanced Cloud VPN. In The 26th International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID ’23), October
16–18, 2023, Hong Kong, Hong Kong. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3607199.3607210

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10. . . $15.00
https://doi.org/10.1145/3607199.3607210

1 INTRODUCTION
A cloud Virtual Private Network (VPN) is an essential cloud network
infrastructure that enables tenants to connect their on-premise
networks with cloud networks using Internet Protocol security
(IPsec) [47]. Major cloud service providers offer tenants the cloud
VPN [4, 29, 58] by dedicating virtual IPsec gateways (hereafter,
“IPsec gateway”) for the tenants. The tenants can leverage their
Virtual Machines (VMs) to operate third-party IPsec gateways (e.g.,
Cisco CSR 1000V series [13], Juniper vSRX [62]) available in cloud
marketplaces. Using the cloud VPN, the tenants establish site-to-
site VPN connections between their on-premise networks and the
cloud networks to protect traffic and isolate the private IP address
space in the multi-tenant environment.

Although a cloud VPN is widely used and has become indispens-
able, security administrators are reluctant to introduce the cloud
VPN into organizations because of security concerns, such as key
disclosure, impersonation, and packet sniffing.
● An attacker can access keys (e.g., authentication keys, ephemeral
keys, and session keys) after compromising IPsec gateways
through privilege escalation via known vulnerabilities [96–
98]. In a multi-tenant environment, an attacker can also ac-
cess the keys that reside in the IPsec gateways of other guests
because of the vulnerabilities of hypervisors that manage
the IPsec gateways [94, 95, 99].
● Malicious insiders can intentionally access the keys owned
by the IPsec gateway of a victim using cloud management
operations. For example, administrators can obtain session
keys used in the IPsec gateway of a guest via cloud man-
agement operations such as taking a snapshot of the IPsec
gateway containing session keys.
● With the leaked authentication keys, an attacker can im-
personate a tenant and establish a VPN connection with a
cloud VPN. The attacker could use this connection to obtain
unauthorized access to the tenant’s VMs.
● With the leaked session keys, an attacker can eavesdrop on
VPN connections between tenants’ on-premise networks
and a cloud VPN. Moreover, malicious insiders can sniff
packets without authorization within a cloud network if the
encryption on packets is optional [28].

Therefore, it is crucial to address the security problems by pro-
tecting both keys and packets in a cloud VPN.

Prior works on IPsec gateways in the cloud focus on operational
aspects such as user mobility support [54] and efficient resource
utilization [80] instead of security enhancement. Studies on general
IPsec gateways [70, 71] leverage a hypervisor or TPM [84] as a trust

https://doi.org/10.1145/3607199.3607210
https://doi.org/10.1145/3607199.3607210

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jaemin Park and Brent Byunghoon Kang

anchor for security enhancement. However, these solutions require
further study about the underlying platforms (e.g., multi-tenant
environment, recent trust anchors, etc.) for cloud deployment.

Software Guard Extensions (SGX) is a good candidate for ad-
dressing the security problems raised in IPsec gateways for a cloud
VPN because SGX creates enclaves that provide applications with
hardware-based protection for security-sensitive data and its asso-
ciated code. Moreover, Intel continuously releases Xeon processors
for data centers, which are supporting SGX and are suitable for
hosting the cloud VPN [42]. The enclaves reside in a part of DRAM
invisible to other software known as the Enclave Page Cache (EPC).
Non-enclave code cannot access the enclaves because the CPU en-
forces access control on the EPC and fetches the contents of the
enclaves from the EPC in an encrypted form. This isolated execu-
tion prevents higher-privileged software (e.g., operating systems
(OSes) and hypervisors) from accessing sensitive data in the en-
claves. Therefore, privileged software cannot access the contents
of the enclaves even if the privileged software has information leak
vulnerabilities.

However, there are several challenges to the adoption of SGX
into IPsec gateways:

1) Limited EPC size for multi-tenant IPsec gateways: The
EPC is a restricted resource whose maximum size for a single ma-
chine is limited. For example, in [19], the maximum EPC size in
SGX v1.0 is 128MB, of which 93MB are usable by the enclave code
and data. While the maximum EPC size is drastically increased in
SGX v2.0, the EPC is still a restricted resource because allocating
the EPC more than the maximum size incurs a significant amount
of performance overhead [22]. This limitation inevitably increases
the price of SGX-enabled VMs. (e.g., a Confidential Computing VM
in Azure is twice as expensive as a general one [59].) Moreover,
even in SGX v2.0, a smaller trusted computing base (TCB) is still
beneficial with respect to security. To secure IPsec gateways with
SGX, the whole or part of the code and data of IPsec gateways must
reside in the EPC. Thus, providing multiple tenants with SGX is
relatively unrealistic for cloud service providers without addressing
this limitation.

2) Performance degradation of data plane caused by the
overhead in enclave transitions: Recent studies [87, 88, 101]
have shown that the overhead in enclave transitions is over 8,000
CPU cycles. A switchless enclave transition [87] still introduces
over 600 to 1,400 CPU cycles [103]. The overhead in the enclave
transitions overwhelms the overhead (150 cycles) [103] of a typical
system call. Adopting SGX to process each packet cannot avoid
the overhead caused by enclave transitions. Thus, this adoption of
SGX should not drastically degrade the performance metrics (i.e.,
throughput, packet per second, and average latency) of the data
plane for the IPsec gateways.

To this end, various SGX-based network applications including
Tor [49], network function virtualization (NFV) applications [15, 66,
77], middleboxes [6, 21, 27, 34, 89], WireGuard [67], and DTLS [73]
have been presented to enhance network security while minimizing
overhead in the data plane. However, the existing solutions do
not cover the security problems of IPsec gateways in the cloud.
Moreover, the solutions do not focus on efficient EPC utilization,
which is an essential criterion for cloud service providers to serve
tenants with network applications.

Therefore, in this paper, we propose EnclaveVPN, which supports
the security-enhanced IPsec gateway using SGX along with the
optimization of EPC usage and practical performance of the data
plane.

To enhance the security of the IPsec gateway, EnclaveVPN lever-
ages enclaves to manage cryptographic keys (e.g., authentication
keys, shared secrets, and session keys) and execute cryptographic
operations for Internet Key Exchange (IKE) [45] and Encapsulating
Security Payload (ESP) [46]. To prevent attackers from sniffing pack-
ets, EnclaveVPN introduces In-Enclave Forwarding, which transmits
only ESP packets within and to/from a cloud network. In-Enclave
Forwarding forwards an ESP packet to its actual destination by
replacing the destination IP address of the ESP packet with the IP
address of the actual destination (address replacement) inside the
enclave.

To optimize the EPC utilization, EnclaveVPN introduces two
features; crypto-partitioning and clear-and-seal. EnclaveVPN splits
the components of the IPsec gateway into two planes; IKE for the
control plane and ESP for the data plane. Crypto-partitioning lo-
cates only cryptographic code and data on the enclaves for each
plane. Clear-and-seal nullifies sensitive-but-unnecessary data and
seals sensitive-and-usable data using SGX sealing [1] for the con-
trol plane. The sensitive-and-usable data are necessary only when
rekeying launches before the established VPN sessions expire.

To minimize overhead in the data plane, EnclaveVPN presents
Authenticated Decryption-merging (AD-merging). AD-merging
merges cryptographic operations (authentication & decryption)
and address replacement for In-Enclave Forwarding into a single
ECall (an invocation of functions located inside an enclave) per
each ESP packet.

Accordingly, not only cloud service providers but also tenants
benefit from EnclaveVPN in terms of the optimized utilization of
limited resources and practical performance of the data plane while
enhancing the security of a cloud VPN.

To the best of our knowledge, EnclaveVPN is the first attempt to
leverage SGX to improve the security of both planes of the IPsec
gateway while supporting optimized EPC utilization and the practical
performance of the data plane.

The contributions of EnclaveVPN toward a security-enhanced
cloud VPN are listed below:

● Design of a security-enhanced IPsec gateway. EnclaveVPN
presents enclave control plane and enclave data plane that
locate sensitive code and data for the IPsec gateway inside
enclaves for security enhancements. (§ 4.3) In-Enclave For-
warding protects traffic within and to/from a cloud network
to defend against attackers (including malicious insiders).
(§ 4.4) The isolated execution (the enclaves) and In-Enclave
Forwarding prevent the attackers from accessing both keys
and packets.
● Optimized EPC utilization. EnclaveVPN introduces EPC
optimization features (crypto-partitioning and clear-and-
seal) (§4.5) that enable cloud service providers to save the
EPC by up to 65% and to lead ≈88% TCB reduction compared
to them for the basic case where the entire IPsec implemen-
tation resides in the EPC of a single SGX machine.

EnclaveVPN RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

● Practical performance of data plane. EnclaveVPNmerges
ECalls for In-Enclave Forwarding operations per a single
packet into only one ECall (AD-merging) (§4.4.2) to minimize
the overhead caused by enclave transitions. This approach
achieved reasonable throughput and packet per second (≥
87%) compared to the non-SGX setting for AES-256-CBC
and HMAC-SHA256-128, which can be considered practical.
● Prototype implementation on a real SGX machine. We
implemented a prototype of EnclaveVPN on a real SGX v1.0
machine (Xeon E-2286M 2.40GHz 8-core CPU) to measure
network performance. This prototype leveraged the Data
Plane Development Kit (DPDK) [68] as the network I/O stack
and Vector Packet Processing (VPP) [25] as the packet pro-
cessing framework.

The remainder of this study is organized as follows. Section 2
describes SGX and IPsec. We define the research problem in Section
3, and provide the details of EnclaveVPN in Section 4. We evaluate
EnclaveVPN in Section 5, and mention related work in Section 6.
We discuss limitations and future work in Section 7.2, and conclude
in Section 8.

2 BACKGROUND
2.1 Software Guard Extensions (SGX)
The SGX is an extended set of instructions that supports enclaves
where security-sensitive code and data are protected by an SGX-
enabled processor. The SGX-enabled processor guarantees the con-
fidentiality and integrity of an enclave using an isolated memory
area, i.e., the EPC, which cannot be accessed from outside the en-
clave. When the enclave is loaded and initialized, the SGX platform
detects whether the enclave has been altered by comparing the
calculated measurement of the enclave with the pre-produced one.
Remote attestation allows a remote entity to verify that the en-
clave is running inside the SGX-enabled processor and that it is
trustworthy.

2.1.1 Isolated Execution Environment. The SGX supports a secure
container called an enclave, which executes code in an isolated
environment. The enclave is isolated from all the other software,
including its application process. The SGX realizes this isolation
using the EPC, and it adds the Memory Encryption Engine (MEE)
[32] to the uncore of the processor to protect the EPC against
physical attacks. The MEE is a hardware unit that protects the
confidentiality, integrity, and freshness of the traffic communicated
between the CPU and the EPC. Cryptographic keys used by the
MEE for this protection are generated uniformly at random during
boot and never leave the CPU. Using the MEE and mechanisms
implemented in the SGX-enabled processor, SGX can achieve an
isolated execution environment.

2.1.2 SGX Attestation. The SGX supports two attestation mech-
anisms, including local and remote attestation. Local attestation
is a cryptographic approach for internal enclaves to attest other
enclaves that reside inside the processor to enable higher-level
functions such as remote attestation. An enclave can prove its iden-
tity to other enclaves by producing attestation evidence, which
includes cryptographic proof that the enclave exists on the same
platform. Remote attestation is a cryptographic approach for remote

entities to attest to the trustworthiness of the underlying hardware
platform and to the running enclaves. Intel provides an enclave for
remote attestation called Quoting Enclave (QE), which is a privi-
leged enclave in the SGX framework. The QE produces attestation
evidence, and the remote entities verify the signature block of the
evidence using the public key from the Intel Enhanced Privacy ID
(EPID) group key.

2.2 IPsec (Internet Protocol security)
IPsec [47] is a secure network protocol suite designed to protect the
IP layer. IKE [35, 45] is a key exchange protocol that provides auto-
matic key management for IPsec. In a cloud VPN, IPsec gateways
leverage IKEv2 [45] and ESP (Encapsulating Security Payload) [46]
in tunnel mode.

2.2.1 IKE (Internet Key Exchange). The IKE is an automatic key
exchange protocol for IPsec that establishes Security Associations
(SAs), secure communication sessions between two IKE peers. IKE
negotiates IKE SAs and ESP SAs, which define cryptographic algo-
rithms and contain session keys along with other parameters. An
IKE SA protects IKE messages, and an ESP SA protects the actual
IP packets. The Security Parameter Index (SPI) is an identification
of these SAs.

When establishing an IKE SA, IKE peers generate a shared secret
from an ephemeral Diffie-Hellman (DH) [18] exchange. Using a
master key generated from the shared secret, the IKE peers derive
session keys for the IKE SA, including a key for deriving session
keys of ESP SAs, keys for authenticating and encrypting/decrypting
subsequent IKE messages, and keys for the IKE peer authentication.
Therefore, if adversaries access the shared secret or the master key,
the adversaries can collapse the entire IPsec security protocol [16].

The IKE launches rekeying for SAs proactively before the lifetime
metrics of the SAs are reached. Only parts of the session keys in
an IKE SA are required before the rekeying of the SAs begins.
Therefore, this part can remain unavailable until the expiration of
the SAs is imminent.

2.2.2 ESP (Encapsulating Security Payload). The ESP is one of the
IPsec protocols, which supports data-origin authentication, data
integrity, and data confidentiality. The ESP in the tunnel mode
encrypts and authenticates (Integrity Check Value (ICV) calculation)
the entire IP packet including the IP header, and encapsulates it
into a new IP packet. Owing to this property, the ESP in the tunnel
mode is widely used in constructing VPN connections for a cloud
VPN.

2.2.3 DPDK (Data Plane Development Kit) and VPP (Vector Packet
Processing). DPDK [68] is a programming framework for high-
speed data plane applications in user mode. A DPDK application
should access all devices via polling to reduce the performance
overhead imposed by interrupt processing. Moreover, DPDK pro-
vides a pipeline model by passing packets or messages between
cores via the rings for better efficiency.

FD.io’s VPP [25] supports a layer 2-4 network stack in Linux
userspace and leverages DPDK for fast I/O. VPP processes multiple
packets (vectors) at a time instead of processing one packet. VPP
processes the vectors via a set of functions, decomposed into a
packet processing graph.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jaemin Park and Brent Byunghoon Kang

3 PROBLEM DEFINITION
3.1 System Model
We consider a tenant operates an IPsec appliance in its on-premise
network, and the appliance connects to a cloud VPN to manage the
tenant’s VMs in a cloud network. (Figure 1)

Cloud Network
Tenant's On-Premise Network Tenant's VMs

IPsec
Appliance

IPsec gateway
(Cloud VPN)

VPN Connections

Attacker

Figure 1: System and Threat Models

A cloud VPN is either an IPsec gatewaymanaged by cloud service
providers or a third-party IPsec gateway running in a tenant’s VM.
Hypervisors, where the cloud VPN and VMs are running, run on
commodity servers that support SGX-enabled processors [37] and
DPDK-compatible network interfaces. The IPsec appliance operates
in an on-premise network under the tenant’s control. Thus, we
assume that the IPsec appliance runs as intended. We assume that
both the cloud VPN and the tenant’s VMs are connected to Intel
Attestation Service (IAS) [39]. Thus, the tenant can launch remote
attestation via the protocol supported by the SGX implementation.

3.2 Threat Model
Adversaries can control entire software stacks on a cloud VPN,
except the code inside enclaves. For example, the adversaries have
compromised the OS, the hypervisor, or the cloud VPN. These ad-
versaries include malicious insiders and/or remote attackers in the
untrusted cloud. The adversaries access and tamper with memory
where the cloud VPN runs. Then, the adversaries attempt to read
the cloud VPN’s keys (e.g., authentication keys, ephemeral keys,
or session keys). The adversaries can also sniff packets within and
to/from a cloud network by intercepting the packets or decrypting
the packets with the leaked keys.

We trust only SGX-enabled processors, enclaves, and mecha-
nisms implemented in the processors, which is the same assump-
tion in the threat model of SGX [56]. Thus, we assume that the
adversaries cannot compromise SGX components on the compro-
mised OS, hypervisor, or cloud VPN. A tenant’s VMs are supposed
to support the SGX-protected library OSes or containers [2, 5, 90]
for running the tenant’s applications. We assume that the code
located in the enclaves is correct and does not leak any key inten-
tionally. We also assume that the tenant’s on-premise network is
trusted, and the adversaries cannot compromise the underlying
cryptographic primitives and protocols.

Similar to other SGX-based network applications [21, 34, 49, 66,
67, 89], all hardware attacks [10, 74, 92, 104] and cache side-channel
attacks [9, 23, 30, 33, 52, 61, 75, 78, 93, 102] along with associated at-
tacks such as cross-tenant attacks (e.g., data leakage, side-channels,
etc.) are beyond the scope of this study. Thus, orthogonal to our ap-
proach, we assume that these attacks can be detected and addressed
using known countermeasures [3, 8, 11, 12, 14, 31, 64, 76, 79]. Simi-
larly, denial-of-service (DoS) attacks are beyond the scope of this

study because adversaries (e.g., privileged attackers) can simply dis-
card key exchange messages and packets or the co-resident tenants
prevent non-SGX portion of code to be properly executed.

3.3 Design Goals
To enhance the security of the cloud VPN, EnclaveVPN should
prevent adversaries from accessing keys of the cloud VPN and
sniffing packets within and to/from a cloud network Further, En-
claveVPN should save limited resources and guarantee a practical
performance of the data plane for feasibility.

The goals for EnclaveVPN are defined as follows.
G1: Secrecy of cryptographic keys. EnclaveVPN should guar-

antee the secrecy of cryptographic keys, including authentication
keys, shared secrets, and session keys, by restricting access to these
keys only to trustworthy parties. Adversaries should be unable to
access any cryptographic key to disguise themselves as a legitimate
entity, falsify key exchange messages, or eavesdrop on packets.

G2: Protection of packets within and to/from a cloud net-
work. EnclaveVPN should protect all packets within and to/from
the cloud network by transforming all packets into ESP packets.
Thus, adversaries should not be able to extort any valuable content
from the packets.

G3: Isolated execution of IPsec gateway. EnclaveVPN should
feature the isolated execution of key exchange and packet process-
ing for each tenant. In a multi-tenant environment, it is crucial to
thwarting attack propagation to other tenants. Thus, even if a cloud
VPN is compromised, adversaries should not be able to access any
data of other tenants by accessing the memory pages of the cloud
VPN.

G4: Feasible IPsec gateway for a cloud VPN. EnclaveVPN
should support the optimized EPC utilization and provide a practical
performance of the data plane for better feasibility. Otherwise,
EnclaveVPN is impractical for both cloud service providers and
tenants in terms of efficiency in the EPC utilization and the data
plane performance. This impracticality results from the fact that
the EPC has a limited size and enclave transitions incur substantial
performance overhead in packet processing.

4 DESIGN
4.1 Overview
EnclaveVPN is a security-enhanced IPsec gateway for a cloud
VPN that leverages enclaves to execute IKE and ESP securely. En-
claveVPN consists of enclave control plane and enclave data plane,
and they each operate their enclaves (EnclaveIKE and EnclaveESP).
This plane separation in EnclaveVPN observes that the usual im-
plementations of IPsec gateways manage IKE SAs and ESP SAs
separately. An IKE daemon (e.g., strongSwan [83]) is a typical user-
land implementation, and it manages the IKE SAs. The daemon
communicates with an IPsec implementation in the kernel (e.g.,
XFRM in Linux) to deliver the negotiated ESP SAs.

A tenant’s IPsec appliance in the on-premise network negoti-
ates SAs including IKE and ESP SAs (VPN connections) with En-
claveVPN. EnclaveVPN extends these VPN connections to protect
packets within a cloud network by In-Enclave Forwarding. To this
end, EnclaveVPN delivers the ESP SAs to the IPsec implementa-
tions of the tenant’s VMs. Note that the tenant’s VMs support the

EnclaveVPN RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

SGX-protected library OSes or containers [2, 5, 90] where the ten-
ant’s applications and the IPsec implementations run. The tenant
can then connect to its VMs via the established VPN connections
(Figure 2). Figure 3 depicts the internal architecture of EnclaveVPN.

Cloud Network

Tenant's
On-Premise Network

EnclaveVPN

Enclave
Control Plane

EnclaveIKE

Enclave Data
Plane

EnclaveESP

IPsec appliance

IKE
(DPA payload)

ESP

IPsec

Tenant's VMs

ESP

ESP SA

 ESP SA
application application

SGX-protected
container or LibOS

Figure 2: Overall system based on EnclaveVPN

Enclave Control Plane

EnclaveIKE

Crypto

KeyDB
SA Database
(metadata)

Message
Processor

sealed keys

authentication
key

clear-and-seal

Enclave Data Plane

EnclaveESP

KeyDBSA Database
(metadata)

Packet
ProcessorECalls

In-enclave
forwarding

SA Delivery
(SGX Attestation)

AD-merging

Crypto

Figure 3: Internal architecture of EnclaveVPN

EnclaveVPN supports In-Enclave Forwarding to prevent adver-
saries from sniffing packets within and to/from a cloud network.
Rather than forwarding a decrypted packet to a destination, En-
claveESP replaces the destination address of the outer IP header of
the ESP packet with the IP address of the inner IP header. The IP
address of the inner IP header is an actual destination address and
can be revealed only after decrypting the ESP packet. Thus, only
ESP packets travel within the cloud network, as shown in Figure 2.
EnclaveVPN leverages AD-merging to minimize the overhead in the
data plane caused by enclave transitions for In-Enclave Forwarding.
AD-merging performs cryptographic operations (ICV verification
& decryption) with the address replacement for a single ESP packet
at only one ECall.

For In-Enclave Forwarding, EnclaveVPN proposes a new IKE
payload, i.e., Data Plane Address (DPA), which contains a list of IP
addresses (destinations of ESP SAs). After negotiating SAs (IKE SAs
and ESP SAs) for VPN connections, enclave control plane delivers
the ESP SAs to enclave data plane and the IPsec implementation of
the tenant’s VMs via secure channels established by local (inside
EnclaveVPN) and remote (for tenant’s VMs) attestation in SGX [1].

By utilizing crypto-partitioning, EnclaveVPN loads only crypto-
graphic operations and keys to the two enclaves to save the limited
EPC. EnclaveVPN supports clear-and-seal to clear sensitive-but-
unnecessary data (shared secrets, master keys, the part of session
keys in the IKE SAs, the derived session keys for the ESP SAs) from
the EPC and seal the sensitive-and-usable data (one of the session
keys in the IKE SAs for rekeying) to the untrusted memory to save
more EPC space.

4.2 Bootstrapping
Before launching EnclaveVPN, a tenant needs a bootstrapping that
provisions authentication keys to EnclaveIKE. We suppose that the
signed enclaves (EnclaveIKE and EnclaveESP) along with the En-
claveVPN implementation have been deployed to the cloud securely
as in [72].

The tenant establishes a secure channel with EnclaveIKE via the
standard remote attestation [1]. The tenant requests a measurement
of EnclaveIKE signed by the SGX-enabled processor and commu-
nicates with the IAS for verification. This attestation ensures that
EnclaveIKE is not altered and that it runs in a genuine SGX-enabled
processor. Moreover, this attestation derives session keys for the se-
cure channel between EnclaveIKE and the tenant. Then, the tenant
transmits the authentication keys to EnclaveIKE through the chan-
nel. This SGX-backed procedure ensures that the authentication
keys are only visible inside EnclaveIKE, and prevents adversaries
from accessing the keys in the cloud.

4.3 Security Enhancement for Planes
EnclaveVPN leverages two enclaves (EnclaveIKE, EnclaveESP), the
SGX-enabled processors, and SGX implementations as trust anchors
to secure enclave control plane and enclave data plane. Instead of
executing all IKE and ESP operations in the untrusted memory,
EnclaveVPN loads and executes them in the EPC.

4.3.1 Securing enclave control plane by EnclaveIKE. EnclaveIKE
provides the message processor of enclave control plane with cryp-
tographic operations. The cryptographic operations include the
DH computation, the session key derivation, the authentication cal-
culation, and the IKE message protection (encryption/decryption,
and integrity calculation). Inside the EPC, EnclaveIKE creates cryp-
tographic contexts, initializes the contexts, and uses the contexts
to fulfill the cryptographic operations for IKE. Because the keys
reside inside EnclaveIKE and do not leave EnclaveIKE during the
operations, adversaries cannot access these keys illegally.

4.3.2 Securing enclave data plane by EnclaveESP. A packet pro-
cessor of enclave data plane leverages EnclaveESP to perform In-
Enclave Forwarding. The packet processor invokes ECalls to pro-
cess the cryptographic operations and the address replacement
against inbound ESP packets using the session keys of an ESP SA.
Once receiving the session keys of the ESP SA from enclave con-
trol plane (EnclaveIKE), EnclaveESP creates cryptographic contexts
and initializes the contexts with the session keys. The session keys
reside inside the EnclaveESP without leaving EnclaveESP during
In-Enclave Forwarding because EnclaveIKE distributes the session
keys of the ESP SA to EnclaveESP via a secure channel established
by remote attestation (§ 4.3.3) and the session keys do not leave
EnclaveESP to fulfill In-Enclave Forwarding. Moreover, In-Enclave
Forwarding allows only ESP packets to be placed in the untrusted
memory because EnclaveESP performs all operations without leav-
ing itself. Thus, adversaries can access neither the session keys nor
the processing plaintext.

4.3.3 SA (Security Association) delivery to enclave data plane and
tenant’s VMs. To establish an ESP SA with an enclave control plane,
a tenant’s IPsec appliance inserts the IP addresses of both enclave

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jaemin Park and Brent Byunghoon Kang

data plane and the tenant’s VMs to the DPA payload. The DPA pay-
load allows the tenant to include a list of IP addresses where enclave
control plane delivers the ESP SAs. Besides the IKE generic com-
ponents (e.g., IKE header, payload length, etc.), the DPA payload
consists of a number of IP addresses and two or more individual IP
addresses.

Enclave control plane delivers the ESP SAs to EnclaveESP in
enclave data plane and the IPsec implementations of the tenant’s
VMs as specified in the DPA payload via a secure channel estab-
lished by the standard SGX attestation [1], which is similar to 4.2.
EnclaveESP creates cryptographic contexts with session keys of the
received ESP SA. Then, EnclaveESP returns the metadata (indices)
of the contexts to the untrusted memory. Enclave data plane passes
this metadata to EnclaveESP to indicate the contexts for In-Enclave
Forwarding. Similarly, the IPsec implementations in the tenant’s
VMs leverage the received ESP SA to configure the VPN connection.

4.3.4 Plane dedication for tenant’s isolated execution. EnclaveVPN
provides each tenant with its dedicated enclave control plane and
enclave data plane for the isolated execution of the IPsec gateway,
as depicted in Figure 4a. For better efficiency in resource utilization,
EnclaveVPN can share an enclave control plane among tenants
like Protego[80]. However, EnclaveVPN should dedicate individual
EnclaveIKE to each tenant in the shared enclave control plane, as
shown in Figure 4b. Then, the tenant provisions its authentication
key to the dedicated EnclaveIKE via a secure channel established by
SGX attestation during the bootstrapping. This isolated execution
for each tenant prevents adversaries from accessing the keys of
other tenants, even if the underlying software (e.g., hypervisor)
is compromised. Moreover, the unprotected shared component
cannot access the keys of other tenants because all keys including
ephemeral ones reside in the EPC.

Enclave Control Plane
(tenant1) ...

...
Enclave Data Plane

(tenant1)

EnclaveESP

EnclaveIKE

ESP SA

Enclave Control Plane
(tenant2)

Enclave Data Plane
(tenant2)

EnclaveESP

EnclaveIKE

ESP SA

(a) Non-shared enclave control plane

Shared Enclave Control Plane
...

...
Enclave Data Plane

(tenant1)

EnclaveESP

EnclaveIKE

ESP SA

Enclave Data Plane
(tenant2)

EnclaveESP

EnclaveIKE

ESP SA

(b) Shared enclave control plane

Figure 4: Dedication of planes and enclaves

4.4 Packet protection with practical
performance of data plane

EnclaveVPN offers In-Enclave Forwarding to prevent adversaries
from eavesdropping on packets transmitted within and to/from a
cloud network. EnclaveVPN supports AD-merging to guarantee
the practical performance of the data plane.

4.4.1 Packet protection by In-Enclave Forwarding. Enclave data
plane transmits only ESP packets within and to/from a cloud net-
work via In-Enclave Forwarding. After receiving an ESP packet,
enclave data plane invokes EnclaveESP to perform the ICV verifica-
tion and the decryption of the packet. Then, EnclaveESP replaces the

destination address of the outer header of the ESP packet with the
IP address of the inner header. Finally, enclave data plane forwards
the ESP packet returned by EnclaveESP to its actual destination.

For this feature, a tenant’s applications and IPsec implementa-
tions should run inside SGX-protected library OSes or containers.
Otherwise, inside attackers can sniff packets at the upper layer
after the packets are decrypted in the IP layer by compromising
the underlying OSes or hypervisors. The IPsec implementation is
supposed to support remote attestation and receive a negotiated
ESP SA for a VPN connection.

4.4.2 Practical performance of data plane by AD-merging (Authenti-
cated Decryption-merging). To minimize the overhead in In-Enclave
Forwarding, EnclaveVPN presents AD-merging, whichmerges cryp-
tographic operations (authentication & decryption) and address
replacement for In-Enclave Forwarding into a single ECall per each
ESP packet. Thus, EnclaveESP exports only one ECall (ecall_ad()),
as defined in Table 1, to enclave data plane for In-Enclave Forward-
ing. Enclave data plane passes input parameters to EnclaveESP; 𝑖𝑑𝑥
is the metadata (indices) to indicate the session keys of the ESP SA;
𝑖𝑣 is an initialization vector (IV); the information (memory address
and length) of the encrypted part (𝑒𝑛𝑐 , 𝑒𝑛𝑐_𝑙𝑒𝑛), the authentication
part (𝑎𝑢𝑡ℎ, 𝑎𝑢𝑡ℎ_𝑙𝑒𝑛), an ICV (𝑖𝑐𝑣 , 𝑖𝑐𝑣_𝑙𝑒𝑛), and the whole output
ESP packet (𝑒𝑠𝑝 , 𝑒𝑠𝑝_𝑙𝑒𝑛).

ECall ecall_ad()

Parameters return value 𝑟𝑒𝑡

index of metadata 𝑖𝑑𝑥

IV 𝑖𝑣

encrypted part 𝑒𝑛𝑐_𝑠𝑟𝑐 , 𝑒𝑛𝑐_𝑠𝑟𝑐_𝑙𝑒𝑛
authenticated part 𝑎𝑢𝑡ℎ_𝑠𝑟𝑐 , 𝑎𝑢𝑡ℎ_𝑠𝑟𝑐_𝑙𝑒𝑛
ICV 𝑖𝑐𝑣 , 𝑖𝑐𝑣_𝑙𝑒𝑛
output ESP packet 𝑒𝑠𝑝 , 𝑒𝑠𝑝_𝑙𝑒𝑛
Table 1: ECall for AD-merging

With the input parameters, EnclaveESP processes as shown in
Algorithm 1. Using 𝑖𝑑𝑥 , EnclaveESP searches the matched crypto-
graphic context. EnclaveESP calculated an ICV (𝑎𝑢𝑡ℎ) over 𝑎𝑢𝑡ℎ_𝑠𝑟𝑐 .
EnclaveESP checks whether the computed ICV (𝑎𝑢𝑡ℎ) matches 𝑖𝑐𝑣 .
If this verification fails, EnclaveESP returns a non-zero value (𝑟𝑒𝑡).
Otherwise, EnclaveESP allocates a temporary memory (𝑡𝑚𝑝) where
EnclaveESP temporarily holds the decrypted packet inside the en-
clave. Because EnclaveESP has already initialized 𝑐𝑡𝑥 with the ses-
sion keys of an ESP SA, EnclaveESP needs to re-initialize 𝑐𝑡𝑥 by
feeding 𝑖𝑣 . EnclaveESP decrypts 𝑒𝑛𝑐_𝑠𝑟𝑐 and replaces the desti-
nation address of the outer header(𝐼𝑃𝑑𝑠𝑡

𝑜𝑢𝑡𝑒𝑟) of 𝑒𝑠𝑝 with the IP
address of the inner header(𝐼𝑃𝑑𝑠𝑡

𝑖𝑛𝑛𝑒𝑟), which is the actual address
of a destination as depicted in Figure 5.

AD-merging converts any existing authenticate-then-decrypt
routine into a single (atomic) ECall instead of two separate ECalls;
one for ICV verification and the other for decryption. This ECall also
executes the address replacement for In-Enclave Forwarding inside
the enclave. Thus, AD-merging reduces the number of enclave
transitions to only one.

Moreover, In-Enclave Forwarding does not introduce any addi-
tional overhead to enclave data plane compared to the case without

EnclaveVPN RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Algorithm 1 Pseudo-code of ecall_ad()
1: 𝑟𝑒𝑡 ← 0
2: 𝑐𝑡𝑥 ← lookup with 𝑖𝑑𝑥
3: 𝑎𝑢𝑡ℎ ← calculate an ICV over 𝑎𝑢𝑡ℎ_𝑠𝑟𝑐
4: if verify 𝑎𝑢𝑡ℎ ≠ 𝑖𝑐𝑣 then 𝑟𝑒𝑡 ← -1
5: else
6: 𝑡𝑚𝑝 ← allocate a temporary memory
7: re-initialize 𝑐𝑡𝑥 with 𝑖𝑣
8: 𝑡𝑚𝑝 ← decrypt 𝑒𝑛𝑐_𝑠𝑟𝑐
9: 𝑒𝑠𝑝 ← replace 𝐼𝑃𝑑𝑠𝑡

𝑜𝑢𝑡𝑒𝑟 with 𝐼𝑃𝑑𝑠𝑡
𝑖𝑛𝑛𝑒𝑟 in 𝑡𝑚𝑝

outer header
IV Payload ESP

trailerdstsrc

inner header

dstsrc

ESP
auth

(ICV)

encrypted

authenticated

EnclaveESP

decryption
replacement

ESP header

SNSPI

dst

untrusted

EPC

Figure 5: Address replacement inside EnclaveESP

In-Enclave Forwarding. Enclave data plane originally verifies and
decrypts an ESP packet via EnclaveESP, and it then forwards a
decrypted packet to its destination. Instead of forwarding the de-
crypted packet, In-Enclave Forwarding changes the ESP packet’s
destination address to the decrypted address of the inner header.
Because In-Enclave Forwarding requires only one ECall, the over-
head to enclave data plane is almost identical to the case without
In-Enclave Forwarding.

4.4.3 Overall packet protection of enclave data plane by In-Enclave
Forwarding and AD-merging. Enclave data plane works with En-
claveESP to process In-Enclave Forwarding as shown in Algorithm
2. Upon receiving the ESP packet (𝑝), the packet processor of en-
clave data plane constructs a new packet structure that contains
address pointers of the authentication part and the encryption part
along with 𝑒𝑠𝑝 that points to 𝑝 . Then, the packet processor in-
vokes ecall_ad() to execute Algorithm 1. If EnclaveESP returns a
non-zero value (𝑟𝑒𝑡), enclave data plane simply discards 𝑝 . Finally,
enclave data plane forwards 𝑝′, a new ESP packet whose destination
IP address was replaced by EnclaveESP, to its destination.

Algorithm 2 Pseudo-code of enclave data plane
1: construct a new packet structure for AD-merging
2: invoke EnclaveESP via ecall_ad()
3: if 𝑟𝑒𝑡 ≠ 0 then drop 𝑝
4: forward 𝑝′ to its destination

To accelerate this operation, enclave data plane allocates the
shared memory. With the allocated shared memory, enclave data
plane constructs the input parameters with the input ESP packet
before ecall_ad() and the output ESP packet after ecall_ad().
Enclave data plane supports In-Enclave Forwarding securely be-
cause EnclaveESP performs the cryptographic operations and the
address replacement for In-Enclave Forwarding inside the enclave.

Moreover, due to In-Enclave Forwarding, enclave data plane can
access only ESP packets located in the shared memory.

4.5 EPC Saving for Planes
EnclaveVPN supports two EPC optimization features (crypto-partitioning
and clear-and-seal) to save the EPC.

4.5.1 Crypto-partitioning for enclave control plane and enclave data
plane. The planes in EnclaveVPN offload only cryptographic oper-
ations (code) and session keys (data) to the enclaves to minimize
attack surfaces. (Figure 3) EnclaveIKE and EnclaveESP utilize Key-
DBs as session key storage and implement cryptographic operations
for handling IKE messages and ESP transformations.

metadata

SAs
(IKE, ESP)

sensitive-but-unnecessary
(SK_p, etc.)

sensitive-and-usable
(SK_d)

clear-and-seal for
Enclave Control Plane

seal

disk

clear

sensitive-and-necessary
(SK_a, SK_e)session

keys

crypto-partitioning (data) for
Enclave Control Plane & Enclave Data Plane

Figure 6: Crypto-partitioning (data) and clear-and-seal of
EnclaveVPN; only the blue parts reside in the EPC.

The IKE and ESP SAs comprise metadata (e.g., SPIs, SA lifetimes,
etc.) and session keys. In crypto-partitioning (data), EnclaveVPN
stores session keys in the enclaves, and the metadata remains in
the unprotected memory. (Figure 6) The information in metadata
is used to manage configurations for VPN connections. However,
the information in the metadata does not pose security concerns as
the adversaries cannot sniff the connections without the session
keys. Thus, crypto-partitioning (data) profits from the efficient EPC
utilization along with the defense against malicious accesses.

In crypto-partitioning (data), EnclaveVPN utilizes enclaves to
perform cryptographic operations. Crypto-partitioning (code) re-
quires developers to partition existing IKE and ESP implementation
into trusted (enclave) and untrusted parts. A possible solution is the
use of automated tools (e.g., Glamdring [53]). Because usual IPsec
implementations already separate two parts (cryptographic and
non-cryptographic operations) and the cryptographic operations
generally include routines to use API calls (e.g., SSL library’s APIs),
manual partitioning is another possible solution.

4.5.2 Clear-and-seal for enclave control plane. IKE manages SAs
from the initial negotiations to the terminations. For this man-
agement, IKE peers exchange IKE messages for notifications and
rekeying, occasionally or periodically after establishing VPN con-
nections. The IKE peers authenticate each other using session keys
for authentication (SK_p) in an IKE SA. The IKE peers protect
the IKE messages using session keys for integrity-protection and
encryption/decryption (SK_a, SK_e) in the IKE SA. Further, the
IKE peers perform rekeying using a session key for key derivation

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jaemin Park and Brent Byunghoon Kang

(SK_d) in the IKE SA to renew the session keys proactively before
the expiry.

With the aforementioned characteristics of SAs, enclave con-
trol plane saves the EPC as depicted in Figure 6 by supporting
clear-and-seal. During the SA establishment, EnclaveIKE gener-
ates shared secrets, master keys, and session keys of an IKE SA
and ESP SAs inside the EPC. After establishing the SAs, the part
of session keys (SK_d, SK_a, SK_e) are used for the SA manage-
ment, and EnclaveIKE distributes the session keys of the ESP SAs
to EnclaveESP. Then, EnclaveIKE nullifies the shared secrets, the
master keys, SK_p, and the session keys of the ESP SA (sensitive-
but-unnecessary) by clear-and-seal. Further, clear-and-seal seals
SK_d (sensitive-and-usable), whose utilization is predictable (i.e.,
rekeying). Only the sensitive-and-necessary part (SK_a, SK_e) for
the IKE message protection resides in the EPC for EnclaveIKE.

Note that SGX sealing [1] does not guarantee the freshness of
the sealed data, and this mechanism can be susceptible to rollback
attacks [82]. Thus, clear-and-seal can store the sealed data in non-
volatile storage on the same platform with the utilization of the
monotonic counters. Clear-and-seal can also leverage ROTE [55]
or Narrator [63] to prevent the rollback attacks and to recover the
sensitive-and-usable part (SK_d) even though adversaries force
EnclaveIKE to reboot.

4.6 Implementation
We implemented the EnclaveVPNprototype 1 on an Intel NUC9VXQNX
(Xeon E-2286M 2.40GHz 8-core CPU) machine running Ubuntu
16.04 LTS (64-bit). The prototype leverages DPDK 18.11 [68] and
VPP 19.08 [25]. We used SGX SSL [40] and the SGX SDK for Linux
[41] to implement EnclaveIKE and EnclaveESP.

We added a plugin into the vanilla VPP for enclave control plane.
The implementation of enclave control plane handles IKE mes-
sages by invoking ECalls of EnclaveIKE. The implementation of
enclave data plane consists of a VPP plugin that supports In-Enclave
Forwarding and the porting of the packet processor into the core
network stack of the VPP. Whenever a packet arrives at the proto-
type, enclave data plane constructs a new packet structure for AD-
merging and enqueues the structure. Then, the VPP plugin of en-
clave data plane dequeues the structure and invokes ecall_ad() to
process the packet. To emulate In-Enclave Forwarding, EnclaveESP
implements the allocation of the temporary memory inside the
enclave.

As indicated in [66, 89], the implementation of enclave data
plane utilizes shared memory between the packet processor and
EnclaveESP. The prototype allocates this memory from 4GB of
RAM by using huge pages of size 1GB. EnclaveESP processes pack-
ets on receiving the memory addresses of the packets from the
packet processor without copying the packets into its EPC pages.
This approach enhances the throughput further because the huge
pages can avoid expensive translation lookaside buffer flushing.
This approach does not reveal any plaintext because In-Enclave
Forwarding locates only ESP packets in this shared memory.

1The source code is available at https://github.com/jmpetrus/EnclaveVPN

5 EVALUATION
5.1 EPC Utilization of EnclaveIKE and

EnclaveESP
We evaluated two EPC optimization features: crypto-partitioning
and clear-and-seal. We highlight that crypto-partitioning achieves
88% code (TCB) reduction compared to Whole, defined as the case
where the entire IPsec implementation resides in the EPC of a single
SGX machine. Crypto-partitioning and clear-and-seal save EPC
(data) 62.5% more than Whole. Whole does not confine any specific
IPsec implementation, but we use the IPsec implementation of VPP
[24] for the comparison.

5.1.1 LoC reduction by crypto-partitioning (code). EnclaveVPN
presents crypto-partitioning to utilize the EPC efficiently and mini-
mize attack surfaces (i.e., small TCB). We refer to the IPsec imple-
mentation of VPP [24], which comprises protocol and cryptographic
parts. We measured lines of code (LoC) in both EnclaveVPN where
only the cryptographic part resides in the EPC and Whole where
the entire IPsec implementation resides in the EPC using Count
Lines of Code (CLOC) [17]. For this measurement, we counted only
the code for API calls in both EnclaveVPN and Whole to use SSL
libraries, excluding the libraries themselves. The result in Table 2
indicates that EnclaveVPN shrinks LoC (TCB) by approximately
88% compared to Whole. Crypto-partitioning also benefits the small
TCB compared to AMD SEV (Secure Encrypted Virtualization), one
of the alternative approaches for the cloud, because AMD SEV re-
quires the entire IPsec implementation including OS to reside in
the encrypted memory [60].

Whole
EnclaveVPN

EnclaveIKE EnclaveESP
LoC 6758 521 268

Table 2: LoC comparison; Whole denotes the entire IPsec im-
plementation resides in the EPC of a single SGX machine.

5.1.2 Optimized EPC utilization by crypto-partitioning (data) and
clear-and-seal. To analyze the EPC usage of EnclaveVPN, we mea-
sured the peakmemory (heap) usage of two enclaves using sgx_emmt
[41], as depicted in Table 3. We measured the memory usage of
Whole by comparatively examining the heap variation before and
after the VPN connections using VPP’s command (show_memory).
The heap utilization increases because cryptographic contexts are
initialized with session keys whenever the VPN connections are
established.

Table 3 depicts the EPC usage of EnclaveVPN and Whole. As
more VPN connections are established, the EPC usages for both
cases increase because each VPN connection generates a new cryp-
tographic context initialized with session keys. EnclaveVPN uti-
lizes the std:map library to store session keys inside the enclaves,
whereas Whole defines a C-structure to store all IKE contexts. Thus,
for one SA, EnclaveIKE consumes more memory due to std:map,
but Whole occupies more memory than EnclaveIKE as the number
of SAs increases. Before implementing clear-and-seal, EnclaveVPN
saves the EPC by 56.39% more than that for Whole. Clear-and-seal

https://github.com/jmpetrus/EnclaveVPN

EnclaveVPN RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Whole
EnclaveVPN

EnclaveIKE EnclaveESPw/o C&S w/ C&S
SAs Used EPC for cryptographic contexts(data)
1 72KB 120KB ≈ 120KB 4KB
10 164KB 152KB 146KB 28KB
100 1.24MB 412KB 349KB 256KB
500 6.09MB 1.48MB 1.18MB 1.28MB
1,000 12.13MB 2.80MB 2.18MB 2.55MB

Table 3: Comparison of EPC usage; C&S denotes clear-and-
seal, and Whole denotes the case where the entire IPsec im-
plementation resides in the EPC of a single SGX machine.

can save 3.66∼5.11% further compared to EnclaveVPNwithout clear-
and-seal. Finally, EnclaveVPNwith crypto-partitioning (56.39%) and
clear-and-seal (3.66∼5.11%) saves the EPC by 62.5% more than that
for Whole.

In SGX v2.0, an enclave can add new pages on-demand; however,
this incurs paging if the enclave exceeds the EPC size [101]. Thus,
it is still valuable to save the EPC as far as possible in SGX v2.0
because paging is expensive and has a significant effect on enclave
performance.

5.2 Performance Evaluation of enclave control
plane

The SGX utilization for the cloud VPN introduces inevitable per-
formance penalties in IKE. To evaluate the IKE performance, we
measured the tunnel setup time and rate. Throughout this eval-
uation, we denote Native as a vanilla implementation with no
enhanced security.

Native EnclaveVPN
Tunnel setup time 20.19 26.72
Tunnel setup rate 99 60

Table 4: Comparison of tunnel setup time (ms) and tunnel
setup rate (tunnels per second)

5.2.1 Tunnel setup time and rate for enclave control plane. We mea-
sured the elapsed time of tunnel setup for establishing a single
tunnel. We also measured the elapsed time for establishing multiple
tunnels to calculate the tunnel setup rate. We leveraged strongSwan
[83] as a tenant’s IPsec appliance to leverage its load tester plugin
for the measurement. We configured the implementations to use
AES-256-CBC for encryption and decryption, HMAC-SHA256-128
for integrity verification, SHA256 for pseudo-random function, and
MODP-3072 for DH computation. We assume that the bootstrap-
ping in 4.2 is already completed before measuring the tunnel setup
time and rate. Bootstrapping happens rarely and the overhead is not
significant because the underlying SGX attestation with a simple
data transfer entails little overhead (56.05 ms [51]).

Table 4 shows the results of the tunnel setup time and rate
for Native and EnclaveVPN. We measured the elapsed time for

a single tunnel. EnclaveVPN records about 32.36% overhead com-
pared to Native. EnclaveVPN invokes 13 ECalls, which differs from
Native. These ECalls comprise a single ECall for the DH computa-
tion, seven for the pseudo-random functions, four for the encryp-
tion/decryption and integrity verification of IKE messages, and one
for clear-and-seal.

To evaluate the tunnel setup rate, we measured the elapsed time
to establish multiple tunnels. For this measurement, we increased
the number of simultaneous tunnel initiations until any single
tunnel failed. Then, we calculated the tunnel setup rate using the
elapsed time to establish the multiple tunnels. The results indicate
that EnclaveVPN establishes 39.39% fewer tunnels per second than
Native. As mentioned in 5.2.2, the performance gap caused by the
ECall overhead yields to the difference of the tunnel setup rate
between Native (0 ECall) and EnclaveVPN (13 ECalls).

Native EnclaveVPN
DH computation 9.853 15.168

pseudo-random functions 0.063 0.137
encryption/decryption 0.005 0.474
integrity verification 0.006 0.077

clear-and-seal - 0.032
Total 9.928 15.888

Table 5: Elapsed time for cryptographic operations (ms)

5.2.2 Detail in performance of enclave control plane. To analyze
the performance in the tunnel setup time and rate, we measured
the elapsed time for each cryptographic operation that EnclaveIKE
supports as depicted in Table 5. Each elapsed time is the accumu-
lated time if multiple cryptographic operations are processed. The
performance gap between Native and EnclaveVPN (37.51%) is al-
most identical to the gap in the tunnel setup time and rate. Thus,
it is clear that the ECall overhead (enclave transitions and crypto-
graphic operations) causes the performance gap in the tunnel setup
time and rate.

Note that the sealed SK_d should be unsealed before rekeying,
whose overhead is known to be less than the sealing operation
[44, 100]. The overhead of the unsealing operation is not included
in this measurement because rekeying, which needs unsealing the
sealed SK_d, is not part of the tunnel setup (i.e., initial tunnel es-
tablishment).

5.3 Network Performance of enclave data plane
The SGX utilization also introduces inevitable performance penal-
ties in ESP. To evaluate the ESP performance, we measured the
network performance metrics (i.e., throughput, packet per second,
and average latency). Throughout this evaluation, we denote Basic
as straightforward adoption (without AD-merging) of SGX into an
implementation.

5.3.1 Practical performance of enclave data plane by AD-merging.
We measured throughput, packet per second, and an average la-
tency of enclave data plane by utilizing the RFC 2544 [7] compliant
network tester, Agilent N2X [86]. Note that enclave data plane im-
plements the emulated In-Enclave Forwarding in EnclaveESP for
this experiment.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jaemin Park and Brent Byunghoon Kang

64 128 256 512
1024

1280
1420

Packet length (byte)

0

10

20

30

40

50

60

70

80

90

Th
ro

ug
hp

ut
 (%

)

718.6Mbps

1057.8Mbps

1383.7Mbps

1634.9Mbps

1798.9Mbps

1836.1Mbps

1865.7Mbps

62.8Mbps
124.1Mbps

243.5Mbps

464.0Mbps

867.8Mbps

1045.5Mbps

1142.8Mbps

106.9Mbps

210.8Mbps

400.0Mbps

750.5Mbps

1355.9Mbps

1604.0Mbps

1734.8Mbps

64 128 256 512
1024

1280
1420

Packet length (byte)

0

200

400

600

800

1000

1200

Pa
ck

et
 P

er
 S

ec
on

d
(k

pp
s)

64 128 256 512
1024

1280
1420

Packet length (byte)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

La
te

nc
y

(m
s)

Native Basic EnclaveVPN(AD-merging/In-Enclave Forwarding) MAX theoretical rate

Figure 7: Performance measurement of enclave data plane (AES-256-CBC and HMAC-SHA256-128)

We define the device under test as a single tunnel between a
pair of the same VPN implementations (Native, Basic, and En-
claveVPN). This configuration is used to measure the real-world
IPsec performance [7, 81]. The network tester limits the traffic gen-
eration to the aggregated 2Gbps traffic for the 1Gbps links. We
configured the implementations to use AES-256-CBC and HMAC-
SHA256-128.

We compare the performance of EnclaveVPN against Native,
which could result in the highest performance for the 1Gbps links.
We also included the maximum theoretical rate of packet per second
for the comparison. We measured the maximum effective through-
put for each packet length, which is the fastest rate to the theoretical
limit of the media per each packet length, as the throughput.

Note that EnclaveVPN is based on IPsec that provides application-
independent security. Thus, we evaluate the performance against
various packet sizes (the emulation of various applications) by
following the same procedure used in previous works: Protego [80],
PIPSEA [65], P4-IPsec [36], [57], [91].

Figure 7 shows the benchmark results on throughput (anno-
tated with aggregated throughput (Mbps)), packet per second, and
the average latency of the implementations (Native, Basic, and
EnclaveVPN) for various packet lengths.

The result shows that EnclaveVPN records practical through-
put and packet per second compared to Native for packets whose
lengths are more than 1280-byte. SGX-enabled implementations
(EnclaveVPN, Basic) output an almost uniform packet per second
for all packet lengths, and this observation is distinct from that of
Native. The overhead in the enclave transitions results in this uni-
form packet per second because the CPU cycles consumed by each
enclave transition (8,000 cycles) overwhelm those caused by each
packet processing in DPDK (over 100 cycles) [26]. This observation
directly influences the throughput and shows similar tendencies to
those of the SGX-enabled implementations.

Further, the results indicate that AD-merging improves the through-
put and packet per second by 51.80%∼70.32% compared to that for
Basic. This enhancement is possible because AD-merging reduces

the enclave transitions for each packet from two to one. The re-
sults also indicate that the adoption of SGX (Basic, EnclaveVPN)
degrades the average latency compared to that for Native.

AD-merging accomplishes the practical performance of the data
plane for 1280-byte and 1420-byte packets since the throughput and
packet per second of EnclaveVPN output more than 87% of Native.
The throughput and packet per second of EnclaveVPN decrease
against small packets (≤ 512-byte). This is reasonable because the
number of enclave transitions increases as the packets shorten for
the given input traffic.

Packet size Throughput (Mbps) Average latency (ms)
1420-byte 1734.8 1.33
1280-byte 1603.9 1.31
1024-byte 1355.9 1.31
512-byte 750.5 0.89
256-byte 400.0 0.94
128-byte 210.8 1.12
64-byte 106.9 0.91

Table 6: Throughput and average latency of EnclaveVPN

Table 6 summarizes the aggregated throughput (Mbps) and aver-
age latency (ms) of EnclaveVPN. The actual numbers in terms of
Megabits per second (Mbps) and milliseconds (ms) were calculated
from the results depicted in Figure 7. The aggregated throughput
of EnclaveVPN is the maximum throughput regardless of the estab-
lished VPN connections.

5.3.2 Detail in performance of enclave data plane. Packet per sec-
ond influences the performance of enclave data plane. The max-
imum theoretical rate for 64-byte packets is approximately 1.2M
packet per second for the 1Gbps link. We calculated the consumed
CPU cycles as shown in Table 7 using the benchmark results (packet
per second) in Section 5.3.1. We refer to the CPU cycles (2.4GHz)
where the prototype is implemented. The theoretical cycle means
the maximum available cycles for the theoretical packet per second.

Each 64-byte packet should be processed within approximately
1,958 cycles. However, 8,000+ cycles are necessary only for an

EnclaveVPN RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

enclave transition per a single packet. Thus, EnclaveVPN can expect
24.48%, 39.84%, and 70.56% performance of the line speed at most
for 64/128/256-byte packets.

Packet size Theoretical Native EnclaveVPN
1420-byte 27,994 29,227 31,431
1280-byte 25,306 26,770 30,644
1024-byte 20,390 21,860 28,999
512-byte 10,560 12,026 26,195
256-byte 5,645 7,105 24,576
128-byte 3,187 4,646 23,312
64-byte 1,958 3,420 22,998
Table 7: CPU cycles per a single packet

5.3.3 Overhead of In-Enclave Forwarding to tenant’s VMs. In-Enclave
Forwarding induces the overhead to tenant’s VMs by the imple-
mentation overhead of library OSes or SGX containers and the
attestation overhead for receiving an ESP SA. However, the SGX
attestation for receiving the ESP SA is not a frequent event because
rekeying occurs in terms of time or traffic volume after the initial
ESP SA is delivered.

In-Enclave Forwarding mandates the VPN connections within
a cloud network. According to [43] encryption on data in transit
is strongly recommended, and most cloud service providers cur-
rently support packet encryption (e.g., TLS, IPsec) within the cloud
network by default or by user configuration. Thus, the packet en-
cryption itself within the cloud network is not a huge overhead to
the tenant’s VMs in terms of the data plane performance. Moreover,
In-Enclave Forwarding does not introduce any additional overhead
to the tenant’s VMs compared to the usual IPsec operations because
In-Enclave Forwarding operates only in EnclaveVPN, not in the
tenant’s VMs. Hence, the IPsec implementations in the tenant’s
VMs handle the receiving of ESP packets as usual.

5.4 Analysis
We evaluate EnclaveVPN from the perspective of the goals defined
in Section 3.3 (denoted by G1-G4 as below and summarized in
Table 8.

Goals Countermeasures

[G1] Secrecy of crypto
keys

Use EnclaveIKE and EnclaveESP to
store crypto keys and execute crypto
operations

[G2] Protection of packets
within and to/from a cloud
network

Support In-Enclave Forwarding

[G3] Isolated execution of
IPsec gateway

Dedicate EnclaveIKE and EnclaveESP
to each tenant

[G4] Feasible IPsec gate-
way for a cloud VPN

Support Crypto-partitioning, Clear-
and-seal, and AD-merging

Table 8: Analysis against goals in Section 3.3.

[G1, G3] EnclaveVPN delegates EnclaveIKE and EnclaveESP to
store cryptographic keys into the EPC and to execute cryptographic

operations for IKE and ESP using the keys inside the enclaves. Fur-
ther, EnclaveVPN provides each tenant with its dedicated enclaves;
EnclaveIKE and EnclaveESP. Because SGX supports an isolated
execution environment for enclaves and the hardware-based access
control mechanism of SGX prevents any illegal access to the EPC,
adversaries cannot access keys and the contents of the packets.
Moreover, crypto-partitioning reduces the attack surfaces of the
IPsec implementation only to the cryptographic operation, which
resides in the EPC. SGX prevents the privileged software (e.g., OSes
or hypervisors) from accessing the EPC directly. Thus, adversaries
cannot impersonate tenants and invade other tenants’ data in the
EPC, even though the adversaries corrupt the privileged software
with known vulnerabilities.

[G2] EnclaveVPN supports In-Enclave Forwarding, which promises
that only ESP packets travel within and to/from a cloud network,
thereby preventing eavesdropping attacks from adversaries (even
including malicious insiders).

[G4] To save the limited resource (EPC), EnclaveVPN introduces
crypto-partitioning and clear-and-seal. Crypto-partitioning for En-
claveIKE and EnclaveESP saves the EPC by up to 56.39% compared
to Whole. Clear-and-seal for EnclaveIKE saves the EPC 5.11% more
than the case without it. AD-merging increases the data plane per-
formance of EnclaveVPN by 51.8∼70.3% more than that for Basic
in terms of the throughput. These features also benefit the average
latency of approximately 45% at most compared to that of Basic. In
addition, the benchmark testing of EnclaveVPN shows more than
87% throughput of Native for 1280-byte and 1420-byte packets.
Thus, EnclaveVPN is feasible because EnclaveVPN achieves both
efficiencies in the utilization of the limited resource and the practi-
cal performance of the data plane while enhancing the security of
a cloud VPN.

6 RELATEDWORK
6.1 IPsec Gateways
Prior works on IPsec gateways in the cloud include a secure tunnel
establishment for user mobility [54] and efficient resource utiliza-
tion [80]. Lu et al. [54] introduced a secure tunnel establishment
by authentication with a key agreement scheme for a roaming user
without carrying the same machine in a private cloud. Protego [80]
presents an architecture of distributed IPsec gateways for multite-
nancy in the public cloud. Protego indicates that dedicating IPsec
gateways to tenants results in inefficient resource utilization be-
cause the gateways consume fixed resources. Thus, Protego divides
the gateways into a control plane and a data plane to resolve this
inefficiency and shares the control plane among tenants. In addition
to SGX utilization, the plane separation in EnclaveVPN differenti-
ates it from one in Protego by introducing the IPsec-specific EPC
optimization features.

We further investigate previous works about general IPsec gate-
ways for security [70, 71] and performance [65]. For the cloud de-
ployment, these solutions need further study about the multi-tenant
environment, recent trust anchors for the cloud (e.g, SGX, SEV),
etc. sVPN [71] proposes a VPN architecture for a trusted platform
that utilizes a hypervisor as an isolated execution environment.
Using a shared IPsec gateway, sVPN provides multiple isolated
environments with dedicated logical IPsec gateways. Sadeghi et

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jaemin Park and Brent Byunghoon Kang

al. [70] proposed an IKEv2 extension to exchange attestation data
that allows a peer to evaluate the internal state of a remote peer.
This extension leverages TPM to calculate the attestation data and
one of the standard IKE exchanges to exchange the attestation data.
PIPSEA [65] presents a high-performance IPsec gateway using the
APU that includes the CPU and GPU in a single chip. PIPSEA uses
an APU’s heterogeneous architecture to eliminate the data copy
overhead between the CPU and GPU and improves GPU utilization
via a new packet scheduling.

6.2 SGX-based Network Applications
SGX is a commercial trusted execution environment and addresses
security problems in network applications running on commodity
hardware such as network middleboxes and NFV [6, 15, 21, 27, 34,
48, 49, 66, 67, 77, 89].

In [48], SGX is presented as a possible solution for providing
security and privacy in network applications such as software-
defined inter-domain routing, Tor, and middleboxes. SGX-Tor [49]
is an approach to enhance the security and privacy of Tor with SGX.
SGX-Tor prevents code manipulation, limits information exposed
to untrusted parties, and reduces adversaries’ power to the network
level.

S-NFV [77] utilizes SGX to isolate the state of NFV applications
securely (e.g., Snort [69]). Trusted Click [15] presents an integration
of SGX into Click [50] for supporting arbitrary NFV applications
securely. SafeBricks [66] allows cloud service providers to monitor
only encrypted traffic and guarantees the integrity of both traffic
and the Network Functions (NFs) by executing the NFs within
enclaves.

SGX-Box [34] presents a secure middlebox system along with
abstraction and a high-level programming language that supports
the secure inspection of encrypted traffic using SGX. LightBox [21]
provides a system that supports full-stack protected stateful mid-
dleboxes at native speed. EndBox [27] is a scalable system that
securely deploys and executes middlebox functions on client ma-
chines at the network edge. ShieldBox [89] is a secure middlebox
framework for deploying high-performance NFs over untrusted
commodity servers. AirBox [6] is a platform that supports fast, scal-
able, and secure onloading of edge functions (EFs) for device-cloud
interactions.

SGX-LKL [67] is an SGX-based runtime that runs unmodified
Linux binaries inside an enclave. SGX-LKL uses WireGuard [20], a
different VPN protocol that supports host-to-host connections as
well as site-to-site connections. SENG [73] is a network gateway
that allows firewalls to attribute traffic to an application using
attestation-based DTLS channels.

7 DISCUSSION
7.1 Consideration of larger EPC
Larger EPC (e.g., 1TB) with SGX v2.0 in very recent architecture
(the 3rd generation Xeon Scalable) [38] may not motivate parti-
tioning of whole IPsec implementations. However, the smaller TCB
would enable source code verification whereas the large application
would entail more vulnerabilities and manual verification is often
infeasible. Thus, partitioned IPsec implementations with smaller

TCB would appreciate the EnclaveVPN’s crypto-partitioning, AD-
merging, and clear-and-seal.

To support the larger EPC, SGX v2.0 introduces a new memory
encryption, Total Memory Encryption (TME), instead of MEE [22].
Additionally, SGX v2.0 implements new protection mechanisms to
prevent replay attacks and manipulations of data from a malicious
enclave inside the EPC [22]. We will refine the experimental results
of EnclaveVPN in SGX v2.0 to evaluate and analyze the impact of
the new memory encryption and the new protection mechanisms
on the performance.

7.2 Limitation and Future Work
We evaluate EnclaveVPN to measure the maximum available effi-
ciency in EPC utilization and data plane performance. To estimate
the maximum of these essential metrics, the evaluation does not
consider the performance issues that are not directly related to En-
claveVPN. For example, enclave paging and performance isolation
across VMs can affect the measurement of the maximum available
efficiency.

Enclave paging [56] enables the privileged software to evict EPC
pages into the untrusted memory when an enclave exceeds the
EPC size. EnclaveVPN does not use the current EPC size limitation
(it is much smaller than 93MB [19] or 1TB [38]). In an unlikely
case when EnclaveVPN is forced to experience enclave paging, the
performance may be affected by the paging overhead. Given that a
cloud VPN is a critical service, we expect the highest priority to run
inside the EPC. Performance isolation [85] means VMs should not
influence the performance of the application in other VMs running
on the same physical machine. Investigating the effects of enclave
paging and performance isolation across VMs in the cloud would
be a good future research topic for enclave usage.

8 CONCLUSION
In this paper, we presented EnclaveVPN, which leverages SGX to
enhance the security of the IPsec gateway in a cloud VPN while
achieving the optimized EPC utilization and practical performance
of the data plane. EnclaveVPN leverages enclaves (EnclaveIKE, En-
claveESP) to manage cryptographic keys and execute cryptographic
operations. EnclaveVPN introduces In-Enclave Forwarding to pre-
vent attackers from sniffing packets within and to/from a cloud net-
work. To save the limited resource in SGX (the EPC), EnclaveVPN
presents crypto-partitioning and clear-and-seal. The experiment
result showed that EnclaveVPN can save up to 62.5% of the EPC
and reduce TCB size to ≈88% in comparison with the case where
the entire IPsec implementation resides in the EPC of a single SGX
machine. Further, EnclaveVPN introduces AD-merging that guar-
antees a practical performance (≈87%) of the data plane for the
non-SGX IPsec gateway against the 1280+ byte packets.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their valuable
comments and suggestions. KAIST was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea
government(MSIT). (No. NRF-2020R1A2C2101134)

EnclaveVPN RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

REFERENCES
[1] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

Technology for CPU Based Attestation and Sealing. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy. Article 13, 7 pages.

[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel O’Keeffe, Mark L
Stillwell, et al. 2016. SCONE: Secure linux containers with Intel SGX. In 12th
USENIX Symp. Operating Systems Design and Implementation, Vol. 16. 689–703.

[3] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V Krishnamurthy, Thomas
La Porta, Patrick McDaniel, and Lisa Marvel. 2017. Malicious co-residency
on the cloud: Attacks and defense. In IEEE INFOCOM 2017-IEEE Conference on
Computer Communications. IEEE, 1–9.

[4] AWS. (n.d.). AWS Managed VPN Connections. https://docs.aws.amazon.com/
vpc/latest/userguide/VPC_VPN.html, Accessed: 2023-3-20.

[5] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding Applica-
tions from an Untrusted Cloud with Haven. ACM Transactions on Computer
Systems (TOCS) 33, 3, Article 8 (2015), 26 pages.

[6] Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada Gavrilovska, Taesoo
Kim, and Karsten Schwan. 2016. Fast, scalable and secure onloading of edge
functions using AirBox. In Edge Computing (SEC), IEEE/ACM Symposium on.
IEEE, 14–27.

[7] Scott Bradner and Jim McQuaid. 1999. Benchmarking Methodology for Network
Interconnect Devices. https://tools.ietf.org/html/rfc2544. Accessed: 2023-3-20.

[8] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto,
Kari Kostiainen, and Ahmad-Reza Sadeghi. 2019. DR. SGX: Automated and
Adjustable Side-Channel Protection for SGX usingData Location Randomization.
In Proceedings of the 35th Annual Computer Security Applications Conference.
788–800.

[9] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In 11th USENIXWorkshop on Offensive Technologies (WOOT
17). 12 pages.

[10] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via
Speculative Execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 142–157.

[11] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang,
XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. 2018. Racing in Hyperspace:
Closing Hyper-Threading Side Channels on SGX with Contrived Data Races. In
2018 IEEE Symposium on Security and Privacy (SP). IEEE, 178–194.

[12] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang. 2017.
Detecting privileged side-channel attacks in shielded execution with Déjá Vu.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communi-
cations Security. 7–18.

[13] CISCO. (n.d.). Cisco Cloud Services Router 1000V Series. https://www.cisco.com/
c/en/us/products/routers/cloud-services-router-1000v-series/index.html, Ac-
cessed: 2023-3-20.

[14] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th {USENIX} Security
Symposium ({USENIX} Security 16). 857–874.

[15] Michael Coughlin, Eric Keller, and Eric Wustrow. 2017. Trusted Click: Over-
coming Security Issues of NFV in the Cloud. In Proceedings of the 2017 ACM
International Workshop on Security in Software Defined Networks & Network
Function Virtualization. ACM, 31–36.

[16] Cas Cremers. 2011. Key exchange in IPsec revisited: Formal analysis of IKEv1
and IKEv2. In European Symposium on Research in Computer Security. Springer,
315–334.

[17] ADanial. (n.d.). Count lines of code. https://github.com/AlDanial/cloc, Accessed:
2023-3-20.

[18] Whitfield Diffie and Martin Hellman. 1976. New Directions in Cryptography.
IEEE Transaction on Information Theory 22, 6 (1976), 644–654.

[19] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio Schiavoni, Pas-
cal Felber, and Daniel Hagimont. 2019. Everything You Should Know About
Intel SGX Performance on Virtualized Systems. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 3, 1, Article 5 (March 2019),
21 pages.

[20] Jason A Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel..
In NDSS. 1–12.

[21] Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang, and Kui
Ren. 2019. LightBox: Full-Stack Protected Stateful Middlebox at Lightning
Speed. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2351–2367.

[22] Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich, Adrian Lutsch,
Zheguang Zhao, and Carsten Binnig. 2022. Benchmarking the Second Genera-
tion of Intel SGX Hardware. In Data Management on New Hardware. 1–8.

[23] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry Ponomarev,
et al. 2018. BranchScope: A New Side-Channel Attack on Directional Branch
Predictor. In Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Vol. 53.
ACM, 693–707.

[24] Fast Data Project (FD.io). (n.d.). Github repository for Vector Packet Processing.
https://github.com/FDio/vpp, Accessed: 2023-3-20.

[25] Fast Data Project (FD.io). (n.d.). Vector Packet Processing. https://wiki.fd.io/
view/VPP, Accessed: 2023-3-20.

[26] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. 2015. Comparison of Frameworks for High-Performance Packet
IO. In 2015 ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems (ANCS). IEEE, 29–38.

[27] David Goltzsche, Signe Rüsch, Manuel Nieke, Sébastien Vaucher, Nico Weich-
brodt, Valerio Schiavoni, Pierre-Louis Aublin, Paolo Cosa, Christof Fetzer, Pascal
Felber, et al. 2018. EndBox: Scalable Middlebox Functions Using Client-Side
Trusted Execution. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 386–397.

[28] Google. 2022. Encryption in Transit in Google Cloud. https://cloud.google.
com/security/encryption-in-transit, Accessed: 2023-3-20.

[29] Google. (n.d.). Google Cloud VPN. https://cloud.google.com/vpn/docs/concepts/
overview, Accessed: 2023-3-20.

[30] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security. ACM, 2 pages.

[31] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller,
and Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection
using Hardware Transactional Memory. In 26th {USENIX} Security Symposium
({USENIX} Security 17). 217–233.

[32] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose
Processors. https://eprint.iacr.org/2016/204. Accessed: 2023-3-20.

[33] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-Resolution Side
Channels for Untrusted Operating Systems. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). 299–312.

[34] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han. 2017. SGX-Box:
Enabling Visibility on Encrypted Traffic Using a Secure Middlebox Module.
In Proceedings of the First Asia-Pacific Workshop on Networking. ACM, 99–105.
https://doi.org/10.1145/3106989.3106994

[35] Dan Harkins, Dave Carrel, et al. 1998. The Internet Key Exchange (IKE). https:
//tools.ietf.org/html/rfc2409. Accessed: 2023-3-20.

[36] Frederik Hauser, Marco Häberle, Mark Schmidt, and Michael Menth. 2019. P4-
IPsec: Implementation of IPsec Gateways in P4 with SDN Control for Host-to-
Site Scenarios. arXiv preprint arXiv:1907.03593 (2019).

[37] Intel Corporation. 2016. SGX Virtualization. https://01.org/intel-software-
guard-extensions/sgx-virtualization. Accessed: 2023-3-20.

[38] Intel Corporation. 2021. What Technology Change Enables 1 Terabyte (TB)
Enclave Page Cache (EPC) size in 3rd Generation Intel Xeon Scalable Processor
Platforms?, 2021. https://www.intel.com/content/www/us/en/support/articles/
000059614/software/intel-security-products.html, Accessed: 2023-3-20.

[39] Intel Corporation. (n.d.). Attestation Service for Intel Software Guard Extensions
(Intel SGX): API Documentation. https://software.intel.com/sites/default/files/
managed/7e/3b/ias-api-spec.pdf. Accessed: 2023-3-20.

[40] Intel Corporation. (n.d.). Intel SGX SSL. https://github.com/intel/intel-sgx-ssl/.
Accessed: 2023-3-20.

[41] Intel Corporation. (n.d.). Intel Software Guard Extensions for Linux OS. https:
//github.com/intel/linux-sgx. Accessed: 2023-3-20.

[42] Intel Corporation. (n.d.). Xeon processors supporting SGX. https:
//ark.intel.com/content/www/us/en/ark/search/featurefilter.html?
productType=873&2_SoftwareGuardExtensions=No. Accessed: 2023-07-13.

[43] Wayne Jansen and Timothy Grance. 2011. SP 800-144: Guidelines on Security
and Privacy in Public Cloud Computing. https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-144.pdf. Accessed: 2023-3-20.

[44] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. 2017. SGX-
Log: Securing System Logs with SGX. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. 19–30.

[45] C Kaufman, P Hoffman, Y Nir, and P Eronen. 2010. Internet Key Exchange
(IKEv2) Protocol. https://tools.ietf.org/html/rfc5996. Accessed: 2023-3-20.

[46] Stephen Kent. 2005. IP Encapsulating Security Payload (ESP). https://tools.ietf.
org/html/rfc4303. Accessed: 2023-3-20.

[47] Stephen Kent and Karen Seo. 2005. Security Architecture for the Internet
Protocol. https://tools.ietf.org/html/rfc4301. Accessed: 2023-3-20.

[48] Seongmin Kim, Youjung Shin, Jaehyung Ha, Taesoo Kim, and Dongsu Han. 2015.
A First Step Towards Leveraging Commodity Trusted Execution Environments
for Network Applications. In Proceedings of the 14th ACM Workshop on Hot
Topics in Networks. ACM, Article 7, 7:1–7:7 pages.

[49] Seong Min Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu Han.
2017. Enhancing Security and Privacy of Tor’s Ecosystem by Using Trusted

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_VPN.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_VPN.html
https://tools.ietf.org/html/rfc2544
https://www.cisco.com/c/en/us/products/routers/cloud-services-router-1000v-series/index.html
https://www.cisco.com/c/en/us/products/routers/cloud-services-router-1000v-series/index.html
https://github.com/AlDanial/cloc
https://github.com/FDio/vpp
https://wiki.fd.io/view/VPP
https://wiki.fd.io/view/VPP
https://cloud.google.com/security/encryption-in-transit
https://cloud.google.com/security/encryption-in-transit
https://cloud.google.com/vpn/docs/concepts/overview
https://cloud.google.com/vpn/docs/concepts/overview
https://eprint.iacr.org/2016/204
https://doi.org/10.1145/3106989.3106994
https://tools.ietf.org/html/rfc2409
https://tools.ietf.org/html/rfc2409
https://01.org/intel-software-guard-extensions/sgx-virtualization
https://01.org/intel-software-guard-extensions/sgx-virtualization
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://github.com/intel/intel-sgx-ssl/
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=No
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=No
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&2_SoftwareGuardExtensions=No
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-144.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-144.pdf
https://tools.ietf.org/html/rfc5996
https://tools.ietf.org/html/rfc4303
https://tools.ietf.org/html/rfc4303
https://tools.ietf.org/html/rfc4301

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jaemin Park and Brent Byunghoon Kang

Execution Environments. In NSDI. 145–161.
[50] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.

2000. The Click modular router. ACM Transactions on Computer Systems (TOCS)
18, 3 (2000), 263–297.

[51] Kubilay Ahmet Küçük, Andrew Paverd, Andrew Martin, N Asokan, Andrew
Simpson, and Robin Ankele. 2016. Exploring the use of Intel SGX for Secure
Many-Party Applications. In Proceedings of the 1st Workshop on System Software
for Trusted Execution. 1–6.

[52] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing. In 26th USENIX Security Symposium (USENIX Security
17). 557–574.

[53] Joshua Lind, Christian Priebe, DivyaMuthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. 2017. Glamdring: Automatic application partitioning for intel
{SGX}. In 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17).
285–298.

[54] Yung-Feng Lu and Chin-Fu Kuo. 2013. Robust and Flexible Tunnel Management
for Secure Private Cloud. ACM SIGAPP Applied Computing Review 13, 1 (2013),
41–50.

[55] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protec-
tion for Trusted Execution. In 26th {USENIX} Security Symposium ({USENIX}
Security 17).

[56] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative In-
structions and Software Model for Isolated Execution. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy. ACM, Article 10, 10:1–10:8 pages.

[57] Jinli Meng, Xinming Chen, Zhen Chen, Chuang Lin, Beipeng Mu, and Lingyun
Ruan. 2010. Towards High-Performance IPsec on Cavium OCTEON Platform.
In International Conference on Trusted Systems. Springer, 37–46.

[58] Microsoft. (n.d.). Azure VPN Gateway. https://azure.microsoft.com/en-us/
services/vpn-gateway/, Accessed: 2023-3-20.

[59] Microsoft. (n.d.). Linux Virtual Machines Pricing in Microsoft Azure. https:
//azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/, Accessed:
2023-3-20.

[60] SaeidMofrad, Fengwei Zhang, Shiyong Lu, andWeidong Shi. 2018. A comparison
study of intel SGX and AMD memory encryption technology. In Proceedings
of the 7th International Workshop on Hardware and Architectural Support for
Security and Privacy. 1–8.

[61] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 69–90.

[62] Juniper Networks. (n.d.). Juniper vSRX Virtual Firewall. https://www.juniper.
net/us/en/products-services/security/srx-series/vsrx/, Accessed: 2023-3-20.

[63] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yinqian Zhang. 2022. NARRATOR:
Secure and Practical State Continuity for Trusted Execution in the Cloud. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 2385–2399.

[64] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. 2018. Varys: Protecting {SGX} Enclaves from Practical Side-Channel
Attacks. In 2018 {Usenix} Annual Technical Conference ({USENIX}{ATC} 18).
227–240.

[65] Jungho Park, Wookeun Jung, Gangwon Jo, Ilkoo Lee, and Jaejin Lee. 2016.
PIPSEA: A Practical IPsec Gateway on Embedded APUs. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. ACM,
1255–1267.

[66] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2018.
SafeBricks: Shielding Network Functions in the Cloud. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI’18).

[67] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie
Cui, Vasily A Sartakov, and Peter Pietzuch. 2019. SGX-LKL: Securing the Host
OS Interface for Trusted Execution. arXiv preprint arXiv:1908.11143 (2019).

[68] DPDK Project. (n.d.). Data Plane Development Kit. https://www.dpdk.org/,
Accessed: 2023-3-20.

[69] Martin Roesch. 1999. Snort: Lightweight intrusion detection for networks. Lisa
99, 1, 229–238.

[70] Ahmad-Reza Sadeghi and Steffen Schulz. 2010. Extending IPsec for Efficient
Remote Attestation. In International Conference on Financial Cryptography and
Data Security. Springer, 150–165.

[71] Steffen Schulz and Ahmad-Reza Sadeghi. 2009. Secure VPNs for Trusted Comput-
ing Environments. In International Conference on Trusted Computing. Springer,
197–216.

[72] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: trustworthy
data analytics in the cloud using SGX. In 2015 IEEE Symposium on Security and

Privacy. IEEE, 38–54.
[73] Fabian Schwarz and Christian Rossow. 2020. {SENG}, the {SGX-Enforcing}

Network Gateway: Authorizing Communication from Shielded Clients. In 29th
USENIX Security Symposium (USENIX Security 20). 753–770.

[74] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-privilege-
boundary data sampling. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 753–768.

[75] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Ste-
fan Mangard. 2017. Malware Guard Extension: Using SGX to conceal Cache
Attacks. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 3–24.

[76] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs. In NDSS.

[77] Ming-Wei Shih, Mohan Kumar, Taesoo Kim, and Ada Gavrilovska. 2016. S-NFV:
Securing NFV states by using SGX. In Proceedings of the 2016 ACM Interna-
tional Workshop on Security in Software Defined Networks & Network Function
Virtualization. ACM, 45–48.

[78] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
2016. Preventing page faults from telling your secrets. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security. 317–328.

[79] Sushrut Shringarputale, Patrick McDaniel, Kevin Butler, and Thomas La Porta.
2020. Co-residency attacks on containers are real. In Proceedings of the 2020
ACM SIGSAC Conference on Cloud Computing Security Workshop. 53–66.

[80] Jeongseok Son, Yongqiang Xiong, Kun Tan, Paul Wang, Ze Gan, and Sue Moon.
2017. Protego: Cloud-Scale Multitenant IPsec Gateway. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17). USENIX Association, 473–485.

[81] Spirent. 2020. Spirent TestCenter: Is it possible to run an RFC2544 throughput
test on STC for IPSec? https://support.spirent.com/SC_KnowledgeView?Id=
FAQ19103, Accessed: 2022-03-24.

[82] Raoul Strackx, Bart Jacobs, and Frank Piessens. 2014. ICE: A Passive, High-
Speed, State-Continuity Scheme. In Proceedings of the 30th Annual Computer
Security Applications Conference. 106–115.

[83] strongSwan Team. (n.d.). strongSwan. https://www.strongswan.org/, Accessed:
2023-3-20.

[84] TCG. (n.d.). TPM Main Specification. https://trustedcomputinggroup.org/
resource/tpm-main-specification/. Accessed: 2023-3-20.

[85] Alain Tchana, Bao Bui, Boris Teabe, Vlad Nitu, and Daniel Hagimont. 2016.
Mitigating performance unpredictability in the IaaS using the Kyoto principle.
In Proceedings of the 17th International Middleware Conference. 1–10.

[86] Keysight Technologies. 2009. Agilent N2X. https://about.keysight.com/en/
newsroom/imagelibrary/2009/13may-em09093/, Accessed: 2023-3-20.

[87] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron Shacham,
Ron Yariv, and Noam Milshten. 2018. Switchless Calls Made Practical in Intel
SGX. In Proceedings of the 3rd Workshop on System Software for Trusted Execution.
ACM, 22–27.

[88] Hongliang Tian, Yong Zhang, Chunxiao Xing, and Shoumeng Yan. 2017. SGXK-
ernel: A Library Operating System Optimized for Intel SGX. In Proceedings
of the Computing Frontiers Conference. ACM, New York, NY, USA, 35–44.
https://doi.org/10.1145/3075564.3075572

[89] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhato-
tia, and Christof Fetzer. 2018. ShieldBox: Secure Middleboxes using Shielded
Execution. In Proceedings of the Symposium on SDN Research. ACM, 2.

[90] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A practical
library OS for unmodified applications on SGX. In 2017 USENIX Annual Technical
Conference (USENIX ATC).

[91] Markku Vajaranta, Arto Oinonen, Timo D Hämäläinen, Vili Viitamäki, Jouni
Markunmäki, and Ari Kulmala. 2019. Feasibility of FPGA accelerated IPsec on
cloud. Microprocessors and Microsystems 71 (2019), 102861.

[92] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdom with tran-
sient out-of-order execution. In 27th {USENIX} Security Symposium ({USENIX}
Security 18). 991–1008.

[93] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution. In 26th USENIX Security Symposium
(USENIX Security 17). 1041–1056.

[94] Common Vulnerabilities and Exposures (CVE). 2010. CVE-2010-0430. https:
//www.cvedetails.com/cve/CVE-2010-0430/, Accessed: 2023-3-20.

[95] Common Vulnerabilities and Exposures (CVE). 2015. CVE-2015-3340. http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3340, Accessed: 2023-3-
20.

[96] Common Vulnerabilities and Exposures (CVE). 2015. CVE-2015-6385. https:
//www.cvedetails.com/cve/CVE-2015-6385/, Accessed: 2023-3-20.

https://azure.microsoft.com/en-us/services/vpn-gateway/
https://azure.microsoft.com/en-us/services/vpn-gateway/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
https://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
https://www.dpdk.org/
https://support.spirent.com/SC_KnowledgeView?Id=FAQ19103
https://support.spirent.com/SC_KnowledgeView?Id=FAQ19103
https://www.strongswan.org/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://about.keysight.com/en/newsroom/imagelibrary/2009/13may-em09093/
https://about.keysight.com/en/newsroom/imagelibrary/2009/13may-em09093/
https://doi.org/10.1145/3075564.3075572
https://www.cvedetails.com/cve/CVE-2010-0430/
https://www.cvedetails.com/cve/CVE-2010-0430/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3340
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3340
https://www.cvedetails.com/cve/CVE-2015-6385/
https://www.cvedetails.com/cve/CVE-2015-6385/

EnclaveVPN RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

[97] Common Vulnerabilities and Exposures (CVE). 2017. CVE-2017-2341. https:
//www.cvedetails.com/cve/CVE-2017-2341/, Accessed: 2023-3-20.

[98] Common Vulnerabilities and Exposures (CVE). 2018. CVE-2018-0053. https:
//www.cvedetails.com/cve/CVE-2018-0053/, Accessed: 2023-3-20.

[99] Common Vulnerabilities and Exposures (CVE). 2019. CVE-2019-17346. https:
//www.cvedetails.com/cve/CVE-2019-17346/, Accessed: 2023-3-20.

[100] Juan Wang, Zhi Hong, Yuhan Zhang, and Yier Jin. 2017. Enabling Security-
Enhanced Attestation with Intel SGX for Remote Terminal and IoT. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 37, 1
(2017), 88–96.

[101] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018. Sgx-perf: A
Performance Analysis Tool for Intel SGX Enclaves. In Proceedings of the 19th

International Middleware Conference (Middleware ’18). ACM, 201–213.
[102] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016.

AsyncShock: Exploiting synchronisation bugs in Intel SGX enclaves. In European
Symposium on Research in Computer Security. Springer, 440–457.

[103] OfirWeisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. ACM SIGARCH Computer
Architecture News 45, 2 (2017), 81–93.

[104] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640–656.

https://www.cvedetails.com/cve/CVE-2017-2341/
https://www.cvedetails.com/cve/CVE-2017-2341/
https://www.cvedetails.com/cve/CVE-2018-0053/
https://www.cvedetails.com/cve/CVE-2018-0053/
https://www.cvedetails.com/cve/CVE-2019-17346/
https://www.cvedetails.com/cve/CVE-2019-17346/

	Abstract
	1 Introduction
	2 Background
	2.1 Software Guard Extensions (SGX)
	2.2 IPsec (Internet Protocol security)

	3 Problem Definition
	3.1 System Model
	3.2 Threat Model
	3.3 Design Goals

	4 Design
	4.1 Overview
	4.2 Bootstrapping
	4.3 Security Enhancement for Planes
	4.4 Packet protection with practical performance of data plane
	4.5 EPC Saving for Planes
	4.6 Implementation

	5 Evaluation
	5.1 EPC Utilization of EnclaveIKE and EnclaveESP
	5.2 Performance Evaluation of enclave control plane
	5.3 Network Performance of enclave data plane
	5.4 Analysis

	6 Related Work
	6.1 IPsec Gateways
	6.2 SGX-based Network Applications

	7 Discussion
	7.1 Consideration of larger EPC
	7.2 Limitation and Future Work

	8 Conclusion
	Acknowledgments
	References

