
1

Harnessing the x86 Intermediate Rings for
Intra-Process Isolation

Hojoon Lee∗, Chihyun Song†, Brent Byunghoon Kang†
∗Department of Computer Science and Engineering, Sungkyunkwan University

†Graduate School of Information Security, KAIST
hojoon.lee@skku.edu, {chihyun.song,brentkang}@kaist.ac.kr

Abstract—Modern applications often involve the processing of sensitive information. However, the lack of privilege separation within
the user space leaves sensitive application secrets such as cryptographic keys just as unprotected as a "hello world" string.
Cutting-edge hardware-supported security features are being introduced. However, the features are often vendor-specific or lack
compatibility with older generations of the processors. The situation leaves developers with no portable solution to incorporate
protection for the sensitive application component. We propose LOTRx86, a fundamental and portable approach for user-space
privilege separation. Our approach creates a more privileged user execution layer called PrivUser by harnessing the underused
intermediate privilege levels on the x86 architecture. The PrivUser memory space, a set of pages within process address space that
are inaccessible to user mode, is a safe place for application secrets and routines that access them. We implement the LOTRx86 ABI
that exports the privcall interface to users to invoke secret handling routines in PrivUser. This way, sensitive application operations
that involve the secrets are performed in a strictly controlled manner. The memory access control in our architecture is privilege-based,
accessing the protected application secret only requires a change in the privilege, eliminating the need for costly remote procedure
calls or change in address space. We evaluated our platform by developing a proof-of-concept LOTRx86-enabled web server that
employs our architecture to securely access its private key during an SSL connection. We conducted a set of experiments, including a
performance measurement on the PoC on both Intel and AMD PCs, and confirmed that LOTRx86 incurs only a limited performance
overhead.

Index Terms—privilege separation; memory protection; operating system

✦

1 INTRODUCTION

User applications today are prone to software attacks, and
yet are often monolithically structured or lack privilege
separation. As a result, adversaries who have successfully
exploited a software vulnerability in an application can
access sensitive in-process code or data that are irrelevant
to the exploited module or part of the application. Today’s
applications often contain secrets that are too critical
to reside in the memory along with the rest of the
application contents, as we have witnessed in the incident
of HeartBleed [1], [2].

The conventional software privilege model that coarsely
divides the system privilege into only two levels (user-
level and kernel-level) has failed to provide a fundamental
solution that can support privilege separation in user
applications. As a result, critical application secrets such
as cryptographic information are essentially treated no
differently than a "hello world" string in user memory
space. When the control flow of a running user context is
compromised, there is no access control left to prevent the
hijacked context to access arbitrary memory addresses.

Many approaches have been introduced to mitigate the
challenging issue within the boundaries of the existing
application memory protection mechanisms provided by
the operating system. A number of works proposed
using the process abstraction as a unit of protection by
separating a program into multiple processes [3], [4], [5].

The fundamental idea is to utilize the process separation
mechanism provided by the OS; these works achieve
privilege separation by splitting a single program into
multiple processes. However, this process-level separation
incurs a significant overhead due to the cost of the inter-
process communication (IPC) between the processes or
address space switching that incur TLB flushes. Also,
the coarse unit of separation still leaves a large attack
surface for attackers. The direction has advanced through
a plethora of works on the topic. One prominent aspect
of the advancements is the granularity of protection.
Thread-level protection schemes [6], [7], [8] have reduced
the protection granularity compared to the process-level
separation schemes while still suffering from performance
overhead due to their sole dependence on page table
modifications for memory protection. Shreds presented fine-
grained in-process memory protection using a memory
partitioning feature that has long been present in ARM
called Memory Domains [9]. However, the feature has been
deprecated in the 64-bit execution mode of the ARM
architecture (AARCH64).

In the more recent years, a number of processor
architecture revisions and academic works have taken
a more fundamental approach to provide in-process
protection; Intel has introduced Software Guard Extensions
(SGX) to its new x86 processors to protect sensitive
application and code and data from the untrusted userspace
as well as the possibly malicious kernel [10], [11].

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

Intel also offers hardware-assisted in-process memory
safety and protection features [12], [13]. However, the
support for the new processor features is fragmented;
the features are not interoperable across processors from
different vendors (Intel, AMD), and they are also only
available on certain Intel processor models. Hypervisor-
based application memory protection [14], [15] may serve
to be a more portable solution, considering the widespread
adaption of hypervisors nowadays. However, it is not
reasonable for a developer to assume that her users are
using a virtual machine.

The situation presents complications for developers who
need to consider the portability as well as the security of the
sensitive data their program processes. Therefore, we argue
that there is a need for an approach that provides a basis for
an in-process privilege separation based on only the portable
features of the processor.

In this paper, we propose a novel x86 user-mode
privilege separation architecture called The Lord of the x86
Rings (LOTRx86) architecture. Our architecture proposes a
drastically different, yet portable approach for user privilege
separation on x86. While the existing approaches sought
to retrofit the memory protection mechanisms within the
boundaries of the OS kernel’s support, we propose the
creation of a more privileged user layer called PrivUser
that protects sensitive application code and data from the
normal user mode. For this objective, LOTRx86 harnesses
the underused x86 intermediate Rings (Ring1 and Ring2)
with our unique design that satisfies security requirements
that define a distinct privilege layer. The PrivUser memory
space is a subset of a process memory space that is
accessible to when the process context is in PrivUser mode
but inaccessible when in user mode. In our architecture,
user memory access control is privileged-based. Therefore,
The architecture minimizes the costly run-time page table
manipulations and address space switching.

We also implement the LOTRx86 ABI that exports the
privcall interface that supports PrivUser layer invocation
from user layer. To draw an analogy, the syscall interface
is a controlled invocation of kernel services that involve
kernel’s exclusive rights on sensitive system operations.
In our architecture, PrivUser holds an exclusive right to
application secrets and sensitive routines with a program,
and user layer must invoke privcalls to enter PrivUser
mode and perform sensitive operations involving the
secrets in a strictly controlled way. Our architecture
allows developers to protect application secrets within
the PrivUser memory space and also write privcall
routines that can securely process the application secret. We
developed a kernel module that adds the support for the
privcall ABI to the Linux kernel (lotr-kmod). In addition,
we provide a library (liblotr) that provides the privcall
interface to the user programs and C macros that enable
declaration of privcall routines, a modified C library for
the building the PrivUser side (lotr-libc), and a tool for
building LOTRx86-enabled program (lotr-build).

We implemented a prototype of our architecture that is
compatible with both Intel and AMD’s x86 processors. We
developed a proof-of-concept LOTRx86-enabled webserver.
In our PoC, the web server’s private key is protected in
the PrivUser memory space, and the use of the key (e.g.,

sign a message with the key) is only allowed through our
privcall interface. In our PoC web server, the in-memory
private key is inaccessible outside the privcall routines
that are invoked securely. Hence arbitrary access to the key
is automatically thwarted (i.e., HeartBleed). The evaluation
of the PoC and other evaluations are conducted on both
Intel and AMD PCs. We summarize the contributions of our
LOTRx86 architecture as the following:

• We propose a portable privileged user mode
architecture for sensitive application code and data
protection that eliminates or minimizes address
switching or run-time page table manipulation.

• We introduce the privcall ABI that allows user layer
to invoke the privcall routines in a strictly controlled
way. We also provide necessary software for building
an LOTRx86-enabled software.

• We developed a PoC LOTRx86-enabled web server to
demonstrate the protection of in-memory private key
during SSL connection.

2 BACKGROUND: THE X86 PRIVILEGE
ARCHITECTURE

The LOTRx86 architecture design leverages the x86
privilege structures in a unique way. Hence, it is necessary
that we explain the x86 privilege system before we go
further into the LOTRx86 architecture design. In this section,
we briefly describe the x86 privilege concepts focusing on
the topics that are closely related to this paper.

2.1 The Ring Privileges

Modern operating systems on the x86 architecture adopt
the two privilege level models in which user programs
run in Ring3 and kernel in Ring0. The x86 architecture, in
fact, supports four privilege layers – Ring0 through Ring3
where Ring0 is the highest privilege on the system. The
x86 architecture’s definition of privilege is closely tied to
a feature called segmentation.

Segmentation divides virtual memory spaces into
segments which are defined by a base address, a limit, and a
Descriptor Privilege Level (DPL) that indicates the required
privilege level for accessing the segment. A segment is
defined by segment descriptor in either Global Descriptor Table
(GDT) or Local Descriptor Table (LDT). The privilege of an
executing context is defined by a 16-bit data structure called
segment selector loaded in the code segment register (%cs). The
segment selector contains an index to the code segment in
the descriptor table, a bit field to signify which descriptor
table it is referring to (GDT/LDT), and a 2-bit field to
represent the Current Privilege Level (CPL). The CPL in %cs is
synonymous to the context’s current Ring privilege number.

The privilege level (the Ring number) dictates an
executing context’s permission to perform sensitive system
operations and memory access. Notably, the execution of
privileged instructions is only allowed to contexts running
with Ring0 privilege. Also, the x86 paging only permits
Ring0-2 to access supervisor pages.

2

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

2.2 Memory Protection
Operating systems use paging to manage memory access
control, and the segmented memory model has long been
an obsolete memory management technique. However,
the paging-based flat memory model, which has become
the standard memory management scheme, uses the Ring
privilege levels for page access control. The x86 paging
defines two-page access privileges: User and Supervisor.
Ring 3 can only access User pages, while Ring 0-2 are
allowed to access Supervisor pages. In general, the pages in
the kernel memory space are mapped as Superuser such that
they are protected from user applications. Table 1 outlines
the privileges of each Ring level.

Algorithm 1 x86 callgate operation
1: procedure CG:Rn→ Rm(SEGSEL)
2: DESC_TBL← if SEGSEL.ti ? LDT : GDT
3: CG← DESC_TBL[SEGSEL.idx]
4: if n > CG.RMPL or n ≤m then
5: return DENIED
6: end if
7: Save(%RIP,%CS,%RSP,%SS) ▷ Save caller context in temp space
8: %SS ← TSS[m].SS ▷ Load new context to be used in Ring m
9: %RSP ← TSS[m].RSP

10: %CS ← CG.TargetCS ▷ Privilege Escalation: n→m
11: %RIP ← CG.TargetEntrance
12: Push SavedSS
13: Push SavedRSP
14: Push SavedCS
15: Push SavedRIP
16: RESUME
17: end procedure

Algorithm 2 x86 long return instruction (%lret)
1: procedure LONG RETURN
2: ▷ can only return to equal or lower privileges
3: if DestPriv < CurrentPriv then
4: return DENIED
5: end if
6: %RIP ← Pop() ▷ target addr
7: %CS ← Pop() ▷ target ring privilege
8: tempRSP ← Pop()
9: tempSS ← Pop()

10: %RSP ← tempRSP
11: %SS ← tempRSP
12: RESUME
13: end procedure

2.3 Moving Across Rings
The x86 architecture provides a number of mechanisms by
which a running context can explicitly invoke privilege
escalation for system services. While the privilege of
the context is clearly specified in its %cs register, its
contents cannot be directly altered (e.g., mov %eax, %cs)
but indirectly with special instructions. The x86 ISA
provides special instructions that allow switching of the
code segment as well as the program counter, namely
the inter-segment control transfers instructions. For instance,
the execution of the syscall instruction elevates the CPL of
the context to Ring0 by loading the %cs with the kernel
code segment. It also loads the PC register (%rip) with
the system call entrance point in the kernel. In modern
operating system kernels, only the instructions that invoke
system calls are frequently used. However, it is necessary
that we explain the concepts and mechanisms of the inter-
segment control transfer mechanisms that were introduced

TABLE 1: Privileges of Four Rings on x86

Ring0 Ring1 Ring2 Ring3
Privileged instruction ✓ × × ×

Supervisor page access ✓ ✓ ✓ ×

along with the four Ring system long before the instructions
dedicated to invoking system calls
Privilege escalation. Our design makes use of the callgate
mechanism for privilege escalation, a feature present in
all modern (since the introduction of the protected mode)
x86 processors. A callgate descriptor can be defined at
the descriptor tables to create an inter-privilege tunnel
between the Rings. Specifically, it defines the target code
segment, whose privilege will be referred to as the Target
Privilege Level (TPL), a Target Addr, and a Required Minimum
Privilege Level (RMPL). A context can pass through a call
gate via a long call instruction1 that takes a segment selector
as its operand. The long call instruction first performs
privilege checks when it confirms that the operand given
is a reference to a callgate. A callgate demands its caller’s
CPL (the current Ring number) to be numerically equal
to or lower than (higher privilege) the callgate’s RMPL.
Also, the caller’s CPL cannot be numerically less than
the TPL of the callgate. In other words, a control transfer
through a callgate does not allow privilege de-escalation.
If these privilege checks fail, the context receives a general
protection fault and is forced to terminate. If the privilege
check is successful, the privilege of the context is escalated,
and the program counter (%rip), as well as the stack pointer
(%rsp), are loaded with the target address. A long call
instruction results in privilege escalation if and only if it
references a valid callgate that defines a privilege escalation
and minimum privilege required to enter the callgate.
Therefore a callgate is a controlled control transfer that
facilitates privilege escalation. We provide a pseudocode
that describes the set of operations performed at the callgate
in Algorithm 1. Note that we denote a control flow transfer
where a context executing in Ring n enters Ring m through
a callgate using the following notation:

CG : Rn→Rm, where n ≤ CG.RMPL and m ≤ n

Privilege de-escalation. A context can return to its original
privilege mode with a long return instruction2 after
privilege escalation. A long return instruction restores the
caller’s context that has been saved by the long call
instruction as shown in Algorithm 2. It should be noted
that a long return instruction only checks if the destination
privilege level is numerically equal to or greater (lower
privilege) by referencing the saved caller context. In fact, a
long return instruction has no way of knowing if the saved
context on the stack is indeed saved by the callgate. Hence,
the long return instruction and similar return instructions
such as iret can be thought of as privilege de-escalating
control transfer instructions that pop the contents that are
presumably saved registers. In this sense, a long return
and its variants provide a non-controlled control transfer
mechanism that is used to de-escalate privileges. We denote

1. "lcall" in AT&T syntax and "call far" in Intel syntax
2. "lret" in AT&T syntax and "retf" in Intel syntax

3

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

this specific type of control transfer where privilege is de-
escalated (or stays the same) from m to n as the following:

Rm→Rn, where m ≤ n

Inter-bitness control transfer. Inter-bitness control transfer
is another type of an x86 control transfer that needs to
be explained before we introduce our design. The x86-
64 architecture provides 32-bit compatibility mode within
the x86-64 (AMD’s amd64 or Intel’s IA-32e architecture).
As with the privilege level, the bitness is also defined
by the currently active code segment descriptor. When a
context is executing in a code segment whose descriptor
has the L flag set, the processor operates in the 64-bit
instruction architecture (e.g., registers are 64-bit, and 64-bit
instructions are used). Otherwise, the context executes as if
the processor is an x86-32 architecture processor. The bitness
switching, although it changes the processor (current CPU
core) execution mode, is no different than any other inter-
segment control transfers with one exception: a callgate
cannot target a 32-bit code segment. This is a perk that
came with the introduction of the x86-64 implementation.
In summary, we denote 32-bit code segments with a x32
suffix as the following:

Rn_x32→Rm

3 ATTACK MODEL AND SECURITY GUARANTEES

3.1 Attack Model
We assume that the adversary is either an outside entity
or a non-administrator user (i.e., no access to root account)
who seeks to extract sensitive application code or data.
The adversary may have an exploitable vulnerability in
the victimized application that could lead to arbitrary code
execution and direct access to the application secret. We
assume such vulnerabilities are present when the app has
been fully initialized and is servicing its user. However,
we presume that the program is safe from the adversary
during the initialization phase of the application. We also
assume a non-compromised kernel that can support the
LOTRx86 architecture. Our design requires the presence
of a kernel module that depends on kernel capabilities,
such as marking memory regions supervisor or installing
custom segment descriptors. Also, our design includes
Enter/Exit gates that facilitate the control transfer between
the PrivUser and normal user mode. The gates amount
to about 50 lines of assembly code, and we assume
they are verifiable and absent of vulnerabilities. However,
we do not consider microarchitectural attacks such as the
variants of Meltdown [16] and Spectre [17]. It is an inherent
limitation of all intra-process isolation schemes, as discussed
in previous works [18], [19].

3.2 Security Guarantees
Our work focuses on providing developers with an
underlying architecture, a new user privilege layer, which
can be leveraged to protect application secrets and also
program routines that access secrets securely. Using our
architecture, we guarantee that a context in normal user
mode cannot directly access a region protected (as a part
of the PrivUser memory space) even in the presence of

vulnerabilities. The adversary cannot jump into an arbitrary
location in the PrivUser memory space to leak secrets since
LOTRx86 leverages the x86 privilege structures to allow
only controlled invocation of routines that handle sensitive
information.

On the other hand, we do not focus on the security
of the code that executes in our PrivUser mode. We
also argue that the protection of application secrets in
the presence of a vulnerability in the trusted code base
(PrivUser code in our case) is an unrealistic security
objective for any privilege separation scheme or even
hardware-based Trusted Execution Environments [10], [20].
For instance, a recent work [21] proved that vulnerabilities
inside SGX could be used to disclose protected application
secrets. However, we do guarantee that the PrivUser layer
is architecturally confined to its privilege that it cannot
modify kernel memory nor infringe upon the kernel (Ring0)
privileges even in the presence of a vulnerability in the
PrivUser code. As we will explain in the coming section
(section 4), this is a pivotal part of our architecture design.
The privilege structures and gates that exactly achieve this
security guarantee are one of the key contributions of this
paper.

4 LOTRX86 DESIGN

LOTRx86 design harnesses the underused intermediate Ring
levels of x86 to establish a new privilege layer called
PrivUser, that is more privileged than the user (Ring3)
and less privileged than the kernel(Ring0). PrivUser can
safeguard sensitive program secrets and also host isolated
code that interacts with the secret. In LOTRx86, access to
the protected memory regions is granted based on the
privilege and thus eliminating the necessity for page table
switching or manipulation, and access to the protected
memory regions is granted based on the privilege.

4.1 Privcall and Design Objectives

LOTRx86 exposes the Privileged User Call, or privcalls,
interface to developers. The developers can port their
programs to use LOTRx86 for sensitive code and data
isolation. Below is the privcall interface that we provide
to developers:

privcall(PRIVCALL_NR,...);

The privcall interface and its ABI are modeled
after the Linux kernel’s system call interface. The
routine in PrivUser is identified with a number (e.g.,
PRIV_USEPKEY=3). For developers with experience in POSIX
system programming, using the privcalls to perform the
application’s secret operations is intuitive.
Privileged-based memory access control. Our approach
introduces a privilege-based memory access control, and it
offers clear advantages over the existing process and thread-
level approaches. The cost of the remote procedure calls
for bridging two independent processes, or the cost of
page table manipulation is eliminated. In our architecture,
the memory access permissions do not change when
the application secret needs to be accessed. Instead, the

4

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

Kernel

KernelUser

User

KernelUser

U U U UU U UUS S SSS SS

S S

U U U UU U UUS S SSS SS

U U U U U SSSS SUU U

Memory Access Map in LOTR-x86

User-mode
(Ring3)

PrivUser-mode
(Ring2-x32)

Gate/Kernel
mode

(Ring1/Ring0)

Execution
Privilege

U User Page S Supervisor Page M Access Denied
By Paging M Access Denied

By Segmentation

 PrivUser

(a) LOTRx86 process memory access map: PrivUser
memory regions are mapped Supervisor protected by
paging when in User-Mode (Ring3). In PrivUser-Mode
(Ring2), in-place memory segmentation protects kernel
and (optionally) normal user-mode memory.

PrivUser Mode
(Ring2-32bit) Callgate

Priv. Escl.
Priv. De-Escl.

Enter Gate

Usermode (Ring3) Gate Mode (Ring1)

(2) LongRet

Exit Gate
 (3) LongCall

(CG2)

(4) LongRet

privcall
 (1) LongCall

(CG1)

PrivUser Mode
(Ring2 x32)

Segmentation

(b) LOTRx86 gate design: implements inescapable
segmentation enforcement through meticulously
designed privilege and gate structures. LOTRx86 uses
Ring1 as Gate-mode in and out of the PrivUser-mode
that executes in Ring2-x32.

Fig. 1: Memory access map and gate design of LOTRx86

privilege of the execution mode is elevated to obtain access
to the protected memory.

Secure invocation. privcall is a single control transfer
instruction (lcall), by which a context enters PrivUser
mode through the LOTRx86 Enter gate and returns upon
finishing the privcall routine. Due to this design, the
adversary cannot jump into an arbitrary location with the
PrivUser privilege. Therefore, our architecture does not
experience the security complications inherent to enable and
disable models [9].

Portability. LOTRx86 does not rely on new processor features
for memory protection [10], [12], [13], [22]. Instead, we
repurpose the underused privilege layers to implement
PrivUser. Hence, our architecture is compatible across all
generations of x86-64 processors. As we will present in §7,
we evaluated our architecture and a PoC on both Intel and
AMD’s x86-64 processors.

4.2 Establishing PrivUser Memory Space

We face formidable challenges in the process of establishing
the PrivUser layer. Our design creates a distinct execution
mode (PrivUser execution mode) and its address space
(PrivUser address space) for PrivUser layer. However, the
resulting PrivUser layer must be intermediate, meaning
that its address space should not be accessible by a user
mode context, and at the same time, PrivUser execution
mode must not be able to access the kernel address space.
However, the x86 paging architecture provides only two
memory privilege distinctions: U-pages and S-pages. The
memory segmentation feature that existed in x86-32 is
deprecated in x86-64, eliminating an additional memory
access control mechanism to paging.

In summary, PrivUser layer must satisfy the two
fundamental memory access security requirements (M-SR1
and M-SR2) to function as an intermediate layer.

M-SR1. User mode must not be able to access PrivUser
memory space

M-SR2. PrivUser mode must not be able to access kernel
memory space

Satisfying M-SR1. We satisfy M-SR1 by mapping all pages
that belong to PrivUser as S-pages to prevent a user
mode context from accessing PrivUser code and data. As
a result, PrivUser memory space that is mapped as S-page
is accessible to PrivUser mode, but not to user mode. Now,
we see that we are already using both of the two privilege
distinctions recognized by the paging system, and we are
unable to protect the kernel from PrivUser mode.
Satisfying M-SR2. We enforce PrivUser mode to be a
segmentation-enforced execution mode to prevent PrivUser
from accessing kernel memory pages, by defining PrivUser
execution mode as a 32-bit segmentation-enabled code
segment as shown in Table 2. This way, entering PrivUser
mode changes not only the currently active code segment
but also the bitness of the execution mode. That is, when
user mode enters PrivUser mode through privcall the
execution mode is set to the 32bit compatibility mode. As
a result, we can enforce segmentation to set boundaries
for the powerful PrivUser mode (Ring2) that is capable of
accessing S-pages. The resulting memory access map of the
three execution modes is illustrated in Figure 1a. With our
design, the PrivUser memory space serves as a functionally
intermediate memory space for PrivUser.

However, adapting segmentation enforcement that
satisfies M-SR2 introduces new challenges that must be
overcome by a meticulously designed PrivUser gate
design. For one, the current x86-64 hardware does not
allow a callgate to perform inter-privilege and inter-bitness
control transfer. This instantly presents a challenge for
LOTRx86 that wishes to let PrivUser operate in the 32-bit
Ring2 mode. Moreover, a naively designed control transfer
structure may allow PrivUser to escape the enforced
segmentation arbitrarily. We explain LOTRx86’s PrivUser
gate design that overcomes the hardware constraint (§4.3)
and achieves inescapable segmentation enforcement (§4.4).
Then, we provide an overview of the final gate design (§4.5)

5

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

for completing M-SR2 in the remainder of this section.

4.3 Hardware constraint and Gate mode

Hardware constraint. There is an x86-64 specific perk that
has been proved to be a constraint in our design. The x86-64
mode (both 64-bit mode and the 32-bit compatibility mode)
only supports a 64-bit mode callgate which is an extended
version of its counterpart that existed in x86-32. Specifically,
it does not allow the target code segment of a callgate to be
a 32-bit segment. This implies that an inter-bitness control
transfer through callgate is not supported both ways; while
CG : Rn_x32→Rm is possible, CG : Rm→Rn_x32 is an
invalid callgate definition. We define this constraint C in
a more formal manner as the following:

C. CG : Rn↛Rm_x32 : callgate cannot target a 32-bit code
segment

Overcoming hardware constraint with gate mode. We
overcome the hardware constraint C through the use
of a Gate mode segment that facilitates elevation of
privilege and switching the execution mode to the 32-bit
compatibility mode. Due to C, a privilege escalation and
bitness switching cannot be simultaneously achieved in
a single callgate transfer. However, we observe that the
two individual operations are still valid in x86-64. Our
design, therefore, adapts a 64-bit Ring1 gate mode to enable
user-to-PrivUser control transfer. The gate mode, then
performs a subsequent lret control transfer into the 32-bit
Ring2 PrivUser mode. With the necessity for a Gate mode
explained, we proceed to explain the properties of LOTRx86
control transfer design (P1 and P2) that provide the control
transfer security requirement for PrivUser (CT-SR).

4.4 Inescapable Segmentation Enforcement
LOTRx86’s control transfer structure must ensure that no
non-controlled (i.e., not through callgates) inter-segment
control transfer paths out of the PrivUser mode arrives in
a segment that is 1. has a Ring privilege numerically less
than 3 (can access S-pages), 2. and is a 64-bit segment (no
segmentation is enforced). This requirement must be strictly
maintained for the memory boundary between PrivUser
and kernel (M-SR2) to hold. We denote this control transfer
security requirement for the enforcement of inescapable
segmentation as CT-SR:

CT-SR. R2_x32↛Re_x64, where e < 3: there must be no
possible non-controlled control transfer from PrivUser
mode (R2_x32) to a 64-bit Ring privilege e (escape) that
is capable of accessing S-page access privilege

Preventing non-controlled control transfer routes. An
adversary may break CT-SR through non-controlled control
transfer if the gate structure is not carefully formulated. As
we explained in §2, a non-controlled inter-segment control
transfer can be made to jump to a less privileged code
segment without any security checks. Therefore we must
rigorously verify all possible non-controlled transfers from
Rp_x32 to all Ring levels e that is e ≥ 2 (Ring privilege

levels that are numerically equal or greater, meaning equal
or lower privilege).

First, we must make sure that a context in PrivUser
mode cannot arbitrarily jump into an arbitrary place in the
Gate mode. Due to constraint C, we must make use of
two intermediate Ring levels; one for the Gate mode and
another for the PrivUser mode. In order to prevent a non-
controlled control transfer Rp→Rg , we realize that the gate
mode privilege must be higher (numerically lower in terms
of Ring number). Hence the following property must hold
in our design:

P1. g < p (Rg is higher in privilege than Rp) : privilege of
Gate mode must be higher than that of PrivUser mode

The second possible escape route is to perform a same-
privilege inter-bitness (32bit → 64bit) inter-segment control
flow. We prevent such a route by intentionally not defining
a 64-bit code segment for the Ring level 2. A Ring privilege
level in the x86 architecture comes into existence when
it is defined in the descriptor table, and a context loads
the segment selector that points to the code segment
through inter-segment control flow instruction. Hence, a
Ring level that is not defined in the descriptor tables, does
not exist within the system. Hence, by only defining a 32-
bit code segment for Ring2, Ring2 becomes a 32-bit only,
segmentation enforced Ring level in our system definition.
We denote this property of our privilege structure design as
shown below:

P2. ∄ Rp_x64 : 64-bit counterpart of PrivUser mode
segment must not exist

4.5 Final gate design overview
In summary, our privilege definitions and gate structures
(Table 2 and Figure 1b) is the only configuration that
satisfies constraint C and also the properties P1 and P2.
Our design satisfies CT-SR by maintaining the required
properties P1 and P2. We chose Ring1 as the privilege level
for Gate mode (g < p), while enforcing the segmentation
on all PrivUser mode execution by defining only 32-bit
segmentation-enforced code segment for the Ring level 2
(∄ Rp_x64). By meeting CT-SR, we complete our solution
for the establishment of the PrivUser memory space that
satisfies both M-SR1 and M-SR2; the PrivUser memory
space is protected from context running in the user mode,
while the PrivUser mode is architecturally bound to its
memory space that it cannot access kernel memory under
all circumstances.

The resulting control transfer between the user and
PrivUser are as the following: a privcall first enters Gate
mode through the CG1 into the Enter Gate (Table 2). At the
gate mode, we load the stack with the following arguments:
{PrivUser entry point, PrivUser code segment selector,
PrivUser stack address, PrivUser stack segment selector},
and then perform a far return lret to enter PrivUser mode.
While this control transfer is made through a non-controlled
control transfer instruction, the Enter gate consisting of
about 30 lines of assembly instructions is guaranteed to
be executed from the beginning by the CG1. In other words,

6

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

we chain a non-controlled control transfer with a controlled
control transfer (CG1) to guarantee its correct execution.

5 IMPLEMENTATION

In this section, we explain the prototype of our LOTRx86
architecture in detail. Our prototype implementation
consists of the following components:

lotr-kmod. We built a Linux kernel module that
communicates with the host process (LOTRx86 enabled
process). The module creates a virtual device interface
at /dev/lotr, and an LOTRx86 enabled program
communicates with our kernel module with the ioctl
interface. The kernel module builds the PrivUser-space
for the program when requested.
liblotr. The user library liblotr allows developers to use
our architecture in the host program, isolate the application
secrets, and implement privcalls that securely access the
secrets. A developer can initialize the PrivUser-space and
utilize the privcall interface through our user library.
The library also includes tools and scripts for building the
executable that runs in the PrivUser-space.
lotr-libc. We provide a modified version of the musl [23]
libc for building the PrivUser executable. We modified
the heap memory manager such that only S-pages are
allocated to the heap managers used in the PrivUser
mode. In this way, we prevent the leakage of the
application secret and the by-products of its processing to
the user space.
lotr-build. lotr-build is a dedicated toolchain that allows
developers to compile the PrivUser portion of their
application and incorporate it into the host application. We
further explain this procedure later.

5.1 PrivUser mode Initialization

The lotr-kmod kernel module initializes the LOTRx86
infrastructure such as the Gate-mode, PrivUser mode,
and control transfer structures for the host process. The
host application is required to call init_lotr(&req)
function from liblotr with an argument of the struct
init_request type during its initialization. The request
structure contains the addresses and sizes of PrivUser
components that lotr-kmod needs in its initialization
routine. Such information includes the range of PrivUser
code segment, data segment, the entry point for the
PrivUser-space, pages to be used as a stack in PrivUser,
and so forth. The addresses of the segments are available
through the symbols generated by our build tools during
the compile-time, while the stack is allocated through mmap
in liblotr. Additionally, lotr-kmod contains the Enter gate
and Exit gate that are loaded into the kernel memory upon
module load.

The lotr-kmod kernel module creates an LDT for the
host process and writes the segment and callgate descriptors
that are used for the Gate-mode and PrivUser mode.
Unlike the GDT, an LDT is referenced on a per-process basis;
an LDT can be created for each process, and the register that
points to the currently active LDT called ldtr is updated in
each context switch. For this reason, the LOTRx86 descriptors
can only be referenced by the host process that explicitly

Type Priv.
Gate-mode CS Code Segment Ring1
Gate-mode DS Data Segment Ring1
PrivUser mode CS Code Segment Ring2-x32
PrivUser mode DS Data Segment Ring2-x32
CG1 CG1 (R3→R1) CPL ≤ 3
CG2 CG2 (R2→R1) CPL ≤ 2

TABLE 2: LOTRx86 LDT descriptors: by defining segment
and callgate descriptors in LDT, LOTRx86 creates Gate-mode
and PrivUser mode for a process

requested the initialization of the LOTRx86 infrastructure.
lotr-kmod creates the descriptor segments listed in Table 2.
A set of Ring1 code and data segments are used for the Gate-
mode, and Ring2-32bit segment descriptors are loaded as a
context enters the PrivUser mode.

The initialization also sets the Gate-mode stack to be
loaded at the Enter callgate. As briefly explained in §2,
the x86 callgate mechanism finds the address of the new
stack for the control transfer at the TSS structure. The TSS
structure holds the addresses of each Ring level. In our case,
we use two callgates, CG(R3→R1) and CG(R2_x32→R1),
that both require a stack for Ring1. Hence, we allocate stack
space and record the top of the stack in the Ring1 stack field
of the TSS (TSS.SP1).

Another important task carried out during the
initialization (in lotr-kmod) is marking the pages that
belong to the PrivUser-space Supervisor pages. The kernel
module walks the page tables and marks PrivUser pages
Supervisor by clearing the User bit in the page table entry.
All pages that are marked Supervisors are maintained in a
linked list so they can be reverted or freed when necessary
as the host process terminates.

When all necessary initialization procedures are finished,
the kernel module creates a lock for the host process based
on its PID. From this point on, lotr-kmod ignores additional
initialization requests delivered via the ioctl requests from
the host to thwart any possible attempt to compromise the
PrivUser-space.

5.2 LOTRx86 ABI

The privcall interface of the LOTRx86 is almost identical to
the syscall interface; privcall follows the x86-64 System
V AMD64 ABI system call convention [24]. That is, we use
%rax, %rdi, %rsi, %rdx, %r10, %r8, %r9 registers for passing
arguments to the PrivUser mode, and the return value
is stored in %rax. Underneath the surface, however, our
unique design enables establishment and secure use of the
PrivUser-space. From here on, we explain each stage of the
control flow transfers in the ABI – starting from a privcall
and its return to its caller.
privcall interface. A privcall (NR_PRIVCALL, ...)
consists of layers of macros that handle a variable number
of arguments and place them in the argument registers in
order. After the arguments are placed according to the x86-
64 syscall ABI, a long call (lcall) instruction is executed
with a segment selector that points to the Enter callgate as
an argument. Upon the executing of lcall, the execution
continues at the Enter gate with a privilege of Ring1.

7

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

1 # Entered from privcall in user mode
2 LOTREnterGate:
3 # (a) Allow only Ring 3 to enter this gate
4 movq 8(%rsp), %r11
5 cmp $3, %r11
6 jnz EXIT
7 # (b) Save User mode(R3) Context
8 pushq 24(%rsp);
9 pushq 16(%rsp);

10 pushq 8(%rsp);
11 pushq 0(%rsp);
12 SAVE_REGS();
13 # (c) Transfer Arguments into PrivUser Stack
14 movq $PrivUserStack, %r11;
15 subq $60, %r11;
16 movl $DummyEIP, 0(%r11d);
17 movq %rax, 4(%r11d);
18 movq %rdi, 12(%r11d);
19 movq %rsi, 20(%r11d);
20 movq %rdx, 28(%r11d);
21 movq %r10, 36(%r11d);
22 movq %r8, 44(%r11d);
23 movq %r9, 52(%r11d);
24 # (d) Push PrivUser(RIP,CS,RSP,SS) onto stack,
25 # then perform control flow transfer
26 movq $PrivUserEnter, %r9;
27 pushq $PrivUserSS;
28 pushq %r11;
29 pushq $PrivUserCS;
30 pushq %r9;
31 lret;
32
33 # Entered from privret in PrivUser mode
34 LOTRExitGate:
35 sub $GateContextSize, %rsp
36 RESTORE_REGS();
37 # in case security check (a) fails
38 EXIT:
39 lret;

Fig. 2: Simplified pseudo assembly code of LOTRx86 Enter
gates

Enter gate. The LOTRx86 Enter gate plays a pivotal role
in safeguarding the user mode context that invoked a
privcall into the PrivUser mode. Figure 2 is a simplified
pseudo assembly code of the implementation. The Enter
gate is written in assembly code and is about 30 instructions
that carry out three main operations.

First, the Enter gate checks the saved %cs in the gate
stack. At this point, the ring privilege has been escalated to
that of the Gate mode (Ring1), stack pointer now points to
Gate mode stack, and the caller context is saved in the new
stack. (for detailed x86 callgate operation, revisit Algorithm
1 in §2). The least significant 2 bits of the saved %cs
(%cs[1:0]) indicate the caller’s Ring privilege. By ensuring
the value to be 3, we prevent PrivUser mode from entering
the Enter gate for possibly malicious intent.

Then the gate saves the user mode caller context in the
Gate mode stack. Note that the x86 long call instruction has
context-saving feature built in. However, since we use the
Ring1 for both Enter gate and Exit gate, the saved context is
overwritten when the context returns from PrivUser mode
back to the Exit gate. Therefore, we found that it is necessary
to perform a manual context saving of the four registers
(%RIP, %CS, %RSP, %SS) in the beginning of our Enter gate as
shown in the code block (b) in Figure 2.

The second operation (code block (c) in Figure 2)
illustrates the transforming of the privcall arguments

that follow the x86-64 calling convention into that of the
PrivUser mode ABI; the in-register arguments must be
transferred to the PrivUser mode stack as preparation
before entering the PrivUser mode. Unlike the conventional
x86-32 ABI, we use the 64-bit arguments in the PrivUser
mode by default. The fact that the PrivUser mode runs in
32-bit compatibility mode but uses 64-bit length arguments
is a peculiar characteristic of our design, and the LOTRx86
Enter gate resolves the calling convention discrepancy.

The last operation (code block (d)) performed in the
Enter gate is to transfer the control flow into the entry
point of PrivUser mode. We push the entry point address,
the address of the PrivUser mode stack that contains the
arguments passed on by the privcall in the user mode
at this point, and their segments (%cs and %ss) on to
the current (Gate mode stack). Then, we execute the lret
instruction to enter the PrivUser mode.
PrivUser entry point. The PrivUser mode entry point
first performs a bound check on the %eax that
contains the privcall number (i.e., 1 ≤ nr_Privcall
≤ MAX_PRIV CALL). The pointers to the predefined
privcall routines are arranged in the Privuser Call Table
(PCT) whose role is identical to the system call table in
the Linux kernel. This mechanism prevents a maliciously
crafted privcall from calling an arbitrary memory address.
If the check is valid, then the entry point calls the wrapper
function for the privcall routine that corresponds to the
number is invoked.
PrivUser routine. The developers can define a privcall
routine through the PRIVCALL_DEFINE(func_name,...)
macro. The macro creates and exports a wrapper function
that calls the main function. This particular implementation
is borrowed from the Linux kernel [25]. The wrapper casts
the 64-bit arguments into function-specific argument sizes
(e.g., 64-bit to int (32bit)) for the defined privcall routine.
After the privcall routine is finished, the execution returns
to the PrivUser entry point to be concluded by lcall that
transfers the control flow back into the Exit gate with the
privilege of the Gate mode (Ring1).
Exit gate. The exit gate scrubs the scratch registers (the six
general-purpose registers as stated in the System V i386
calling convention) to prevent information leakage from the
PrivUser mode. Recall that we manually saved the user
mode context in the stack from the Enter gate. We subtract
the stack pointer (48(8× 6) bytes in our implementation) to
move it to the saved context. We execute popq instruction to
restore %rbp then the lret instruction to restore %RIP, %CS,
%RSP, %SS to return to the original caller of the privcall
with a privilege of user mode (Ring3).

5.3 Developing LOTRx86-enabled program
We developed tools and libraries that allow developers
to write LOTRx86-enabled programs. Writing a privcall
routine is similar to writing a regular user-level code.
However, there are key differences both in the developer’s
perspective and underneath the surface. Here, we
outline the important aspects of LOTRx86-enabled program
development.

The privcall interface and the development of
privcall routines are intentionally modeled after the Linux

8

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

kernel’s system call interface. For this reason, the procedures
for developing the PrivUser side of the program and
invoking them as necessary are nearly identical to those of
developing new system calls to the kernel.
privcall declaration. liblotr provides two important
macros through <lotr/privuser.h>. First is the
declaration macro #PRIVCALL_DEFINE. The macro
takes the name of the function as the first argument and up
to six arguments. The type and the name of the arguments
must be entered as if they are separate arguments (e.g., (int,
mynumber)). This is because PRIVCALL_DEFINE generates a
wrapper function that casts the ABI-defined arguments into
the argument’s type. We restrain from further explaining
the details of the macro since it is almost identical to the
kernel’s SYSCALL_DEFINE macro.
Compiling with lotr-libc. We provide gcc-lotr which
is a wrapper to the gcc compiler. gcc-lotr links the
user’s PrivUser code with lotr-libc instead of the default
glibc (32bit). lotr-libc is a modified version of musl-
libc. We modified the malloc function in the musl-libc
so that it manages a memory block from the PrivUser
memory space S-pages. This is to prevent the by-products
or the application itself from being placed in a memory
region accessible to the normal user mode. Additionally,
we implemented a function that initializes process Thread
Local Storage (TLS) that can be called from liblotr’s
init_lotr() function. The initialization of a process TLS is
performed by the libc library before the program’s main() is
executed. Therefore, it is necessary to implement a separate
function to initialize the TLS for LOTRx86.
Building final exectuable. Compiling the PrivUser code
with our build tools yields two files: a header file in which
privcall numbers are defined, and a LOTRx86 object in
.lotr extension. The header file lists the assigned number
for each declared privcall routines, and the .lotr file
is an object file ready to be linked to the main program.
Our build tool compiles the PrivUser code in x86-32 code.
However, we copy the sections of the 32-bit object into a
new 64-bit ELF object format so that it can be linked to the
main program. The PrivUser build tools also strip all the
symbols to prevent symbol collision between the 32-bit libc
(lotr-libc) and the 64-bit libc used in the main program,
then it generates a symbol table that includes addresses
of the PrivUser object sections and most importantly, the
PrivUser entry point. The main program is built with our
linker script (LOTR.linkerscript) that loads the symbol
table generated during PrivUser build. When the main
program launches, init_lotr() fetches the symbols and
transfers them to lotr-kmod, and the kernel module marks
the memory pages that belong to the PrivUser memory
space S-pages.

5.4 Kernel changes
The LOTRx86 prototype is implemented as a kernel module.
However, we also made minor but necessary modifications
to the Linux kernel. First of all, we made sure that system
calls (e.g., mprotect) that alter the memory permissions
of the user memory space ignore the request when the
affected region includes PrivUser-memory. This is achieved
by simply placing a “if-then-return -ERR” statement for the

case where the address belongs to the user-space but the
page is an S-page. We made a similar change to the munlock
system call so that PrivUser’s P-pages are excluded from
possible memory swap-outs.

6 SUPPORTING 64-BIT EXECUTION ISOLATION
WITH PRIVUSER64
In this section, we describe an extension to the LOTRx86
architecture that allows 64-bit PrivUser execution. The
alternative privilege separation design allows the PrivUser
mode to operate in Ring2 64-bit execution mode, namely
the PrivUser64 mode. We employ kernel page unmapping
such that the kernel pages are unmapped during user and
PrivUser mode execution. This eliminates the necessity
for the segmentation feature enabled through making the
PrivUser code segment to 32-bit. We add PrivUser64
support through extending the components of LOTRx86 to
provide options to choose either PrivUser or PrivUser64.
Both execution modes cannot be enabled simultaneously.
However, liblotr allows selecting either PrivUser or
PrivUser64 during initialization through an argument and
also provides a new privcalls interface. The introduction
of PrivUser64 is achieved through modifications mostly
in the kernel module and the LOTRx86 toolchain; the user
space changes are minimal, and PrivUser64 is designed to
be compatible with the existing LOTRx86 ABI. This means
that the previous applications written with the LOTRx86 API
can be recompiled to use PrivUser64 with minor changes.

6.1 Establishing PrivUser64 Memory Space

LOTRx86 with PrivUser64 achieves 64-bit execution mode
isolation through replacing the segmentation with kernel
memory space unmapping. Segmentation in LOTRx86
default design serves to create a boundary between
PrivUser and kernel. We observe that we can let PrivUser
operate in 64-bit intermediate privilege Ring by adapting a
hybrid approach that utilizes page unmapping. To achieve
this, we leverage Kernel Page Table Isolation (KPTI) [26], [27].

KPTI, introduced as mitigation for Meltdown [16] has
brought permanent changes in the memory isolation model
in many x86 systems; KPTI is obligatory for a large
number of machines with Intel-based x86 processors. KPTI-
enabled systems no longer map user and kernel memory
pages simultaneously mapped. That is, when a context
is in user mode, the kernel pages except a few that are
essential for facilitating kernel entrance are unmapped. This,
quite ironically, satisfies the design requirement M-SR2 of
the LOTRx86 architecture explained in §4.2. Consequently,
LOTRx86 in x86 systems that are affected by Meltdown no
longer require the 32-bit mode segmentation.

By leveraging KPTI, we opportunistically explore the
64-bit mode enabling design for LOTRx86. The memory
space separation between user and PrivUser32 is still
achieved through marking PrivUser32 pages as S-pages,
and utilizing the inter-privilege callgates, while PrivUser32
and kernel memory space isolation is achieved through
unmapping kernel space while in user and PrivUser. For
systems with KPTI enabled (e.g., most Intel-based x86
systems), the 64-bit mode LOTRx86 can be readily deployed.

9

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

Kernel

KernelUser

User

KernelUser

U U U UU U UUS S SSS SS

S S

U U U UU U UUS S SSS SS

U U U U U SSSS SUU U

Memory Access Map in LOTRx86-PrivUser64

User Mode
(Ring3)

PrivUser64 Mode
(Ring2-x32)

Kernel Mode
(Ring0)

Execution
Privilege

U User Page S Supervisor Page M Access Denied
By Paging M Umapped Pages

PrivUser

(a) LOTRx86 PrivUser64 process memory access map:
PrivUser memory regions are mapped as Supervisor
protected by paging when in User-Mode (Ring3). Kernel
pages are unmapped during User and PrivUser64
mode execution

Usermode (Ring3)

(2) LongRet

 (1) LongCall (CG1)

PrivUser64 Mode
(Ring2)

Callgate

Priv. Escl.
Priv. De-Escl.

privcall

(b) LOTRx86 PrivUser64 gate design: PrivUser64 uses
Ring2-64 as its execution mode, and gate structure is
simplified compared to that of LOTRx86.

Fig. 3: Memory access map and gate design of LOTRx86 PrivUser64

For systems that do not require KPTI, incorporating a
per-process KPTI-like kernel memory isolation for LOTRx86-
enabled processes can be considered. While we regard such
effort future work, we evaluate the PrivUser64 design and
show that it outperforms the 32-bit PrivUser32 through
microbenchmarks and LOTRx86-enabled webserver in §7. In
all, we outline satisfying the memory security requirements
(M-SR for PrivUser64) as the following:
Satisfying M-SR1. LOTRx86’s PrivUser64 extension
prevents user-bound PrivUser memory space access using
the same method as in LOTRx86. Since PrivUser pages are
marked as s-pages, a context running in user mode cannot
access PrivUser memory.
Satisfying M-SR2. PrivUser64 extension adapts the
paging-based memory isolation technique to isolate the
kernel memory space from PrivUser. More specifically, the
kernel pages are unmapped while the context is executing
in user or PrivUser mode. Such feature has already
been incorporated in the Linux kernel since the rise of
meltdown [16] We leverage the KPTI in the Linux kernel.
We reuse the KPTI to evaluate the PrivUser64 isolation
model. Figure 3a shows the memory access map for the user,
PrivUser64 and the kernel. The PrivUser memory space is
protected from user mode through the use of s-pages as
in LOTRx86. Unlike LOTRx86, however, the PrivUser-kernel
boundary is defined by unmapping the kernel pages while
executing in user(Ring3) and PrivUser (Ring2) execution.

6.2 Improved Binary Compatibility

Besides the general performance and memory capacity
advantages of 64-bit mode execution over 32-bit mode
execution, the 64-bit support also attenuates the binary
compatibility issues that may arise when porting programs
to use LOTRx86. A 32-bit PrivUser execution mode creates
a binary compatibility problem between the user mode and
PrivUser mode. The necessity of data structure serialization
during argument passing is one such example. A developer
must define binding code and data structures that are
dedicated to argument passing or serialize the 64-bit data

structure into its 32-bit counterpart. These approaches are
feasible when the isolated compartment in PrivUser is
small and exposes only a handful number of functions via
privcalls (e.g., our Nginx PoC presented in §5). However,
the procedure may be cumbersome when isolating a large
component into PrivUser, although it is not advisable from
a security perspective. A 64-bit PrivUser will resolve the
binary compatibility issue and simplify the porting process
for LOTRx86.

6.3 Supporting Systems Calls inside PrivUser64

The adaptation of a 64-bit Ring2 PrivUser execution
mode introduces a complication; we found that the x86-
64 syscall and sysret instructions, that lets the context
enter and exit kernel mode for system calls, assume that all
incoming system calls are from Ring3. This is a behavior
that was not present in PrivUser32 that used the int
0x80 instruction for kernel entrance. More specifically,
the syscall instruction overwrites the caller cs segment
register content with that of the kernel without saving
that of the caller. As such, the sysret instruction simply
overwrites the cs segment register with that of the Ring3
user mode without respecting the caller’s cs segment. This
poses a challenge to the design of LOTRx86, since a PrivUser
context will be in Ring3 execution privilege when returning
from a system call.
Authenticating PrivUser contexts in system call entry. In
order to mitigate the issue, we make a slight modification
to the system call entry and exit points. That is, we must
alter the system call handling behavior such that it respects
the privilege level of the user context. While the original
content of the cs register is lost upon entering kernel, we

Type Priv.
PrivUser64 mode CS Code Segment Ring2-x64
PrivUser64 mode DS Data Segment Ring2-x64
CG CG (R3→R2) CPL ≤ 3

TABLE 3: LDT descriptors of LOTRx86 with PrivUser64.

10

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

observe that the ds register is intact. This allows us to
differentiate the PrivUser contexts from user mode contexts
at the system call entry point. We use the ds segment
register as a token for the possession of the Ring2 execution
mode privilege. Loading the Ring2 data segment into the
ds segment register requires the context to be executing in
a privilege higher than Ring2. Hence, we can verify that the
context was executing in Ring2 when syscall instruction
was invoked if ds contains a selector to a data segment
whose privilege is Ring2. Based on this observation, we
let contexts load the the Ring2 ds segments as they enter
PrivUser mode in the entry point. Then, we check if the
context’s ds segment register points to a Ring2 ds segment
at the system call entry point to authenticate the context’s
possession of the Ring2 privilege. That is, the DPL of the %ds
segment register is used as a token for authenticating that
the context has invoked the system call during the PrivUser
(Ring 2) execution.
Returning contexts to PrivUser64. To enable returning
from a completed system call back to PrivUser mode,
we use the iret instruction that respects the caller’s %cs
register. We slightly modify the system call exit routine
so that the contexts identified as PrivUser contexts in the
system call entry point returns to the PrivUser mode with
their original Ring2 privilege.

6.4 Summary of Implementation Changes
We explain the summary of changes to extend LOTRx86
implementation to support PrivUser64. The PrivUser64
mode support is added in a non-intrusive manner such
that the LOTRx86 ABI is respected and thus allowing
the existing LOTRx86-enabled applications can be easily
recompiled to use PrivUser64 (e.g, our LOTRx86-enabled
webserver to be presented in §5). liblotr now provides
two header files and shared libraries for PrivUser32
and PrivUser64 (e.g., #include “lotr/privcall.h” vs.
#include “lotr/privcall64.h”). We add PrivUser64
compilation mode to lotr-build in which the process of
building a 32-bit executable is omitted, and the PrivUser64
sections are directly embedded into the final executable to
be loaded into PrivUser64 memory space during runtime.
Regarding PrivUser entry point, the gate mode (Ring1) is
no longer necessary and hence a user mode context enter
PrivUser64 directly via a lcall instruction that targets a
Ring3 to Ring2 callgate (CG : R3→R2). The entry point
to PrivUser64 is positioned at the target of the callgate is
shown below:

1 SAVE_ALL
2 movq $call_table, %rbx
3 shl $3, %rax
4 addq %rax, %rbx
5
6 # Load Ring2 DS for auth at syscall entry
7 mov $0xe, %r15
8 mov %r15, %ds
9

10 # Invoke corresponding privcall
11 call *0(%rbx)
12
13 # Clear DS before return to user
14 xor %r15, %r15
15 mov %r15, %ds
16 RESTORE_ALL

17 rex64 lret

In addition to simplifying the complex privilege
structure, the PrivUser64 entry point is concise as there
is no need to bridge the gap between the 32-bit and 64-bit
ABI differences. For instance, there is no need to transfer in-
register privcall arguments from user mode onto the 32-
bit PrivUser’s stack. The mov instruction that manipulates
the %ds instructions allow the system call entry point to
authenticate system calls invoked from PrivUser64 as we
explained.

We evaluate LOTRx86 through a set of experiments
in the next section. For all experiments, we compile the
isolated program component to both 32-bit PrivUser and
PrivUser64 to show the performance characteristics of the
two PrivUser execution modes.

7 EVALUATION

To show the feasibility and efficiency of the LOTRx86
architecture approach, we performed a set of
microbenchmarks (§7.1), a comparison against traditional
memory protection methods using an example program,
and a real-world application evaluation. For the real-world
application evaluation, we developed a proof-of-concept
(PoC) by incorporating our architecture into the Nginx
webserver [28] as well as the LibreSSL [29] that is used by
the web browser to support SSL. We modified the parts of
the webserver to protect the in-memory private key in the
PrivUser memory space and only allow access to the key
through our privcall interface.

We evaluate LOTRx86 implementation, including the 64-
bit extension. To avoid confusion, we use the term PrivUser
in a more general sense, while we use PrivUser32 and
PrivUser64 to refer to each PrivUser execution modes
that LOTRx86 support, respectively. Also, we call privcalls
to the two PrivUser execution modes as privcall32 and
privcall64. For all programs used in the evaluations, we
compile two versions such that one runs on PrivUser32
while the other runs in PrivUser64. For LOTRx86 with
PrivUser64 mode, we enabled the KPTI feature for both
Intel and AMD machines. Hence, it should be taken into
account that in the evaluations in which PrivUser64’s
performance is measured, KPTI induced a system-wide
overhead.

We present the results from a set of microbenchmarks
that we performed to measure the latency induced by the
privcalls. Then, we compare the performance of the PoC
webserver whose private key is protected with its original
version. Our experiments are conducted on both Intel and
AMD to show that our approach is portable. The evaluations
were conducted with an Intel machine with Core i7-10700 (8
cores, 2.89Hz) and 32GB of RAM and an AMD machine with
Ryzen Threadripper 3990x (64 cores, 2.9GHz) and 256GB
of RAM. Both machines run Ubuntu 20.04.2 with Linux
kernel 4.14.72. KPTI is enabled for both PrivUser32 and
PrivUser64 isolation on Intel and AMD.

7.1 Microbenchmarks
The privcall allows developers to invoke routines that
access application secrets in the PrivUser layer. A certain

11

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

pri
vc
all
32

pri
vc
all
64

em
pty

ma
llo
c(3
2) ioc

tl
ge
ttid op

en

pri
ntf
('A
'*3
2')

N
u
m
b
e
r
o
f
C
y
c
le
s

single invocation
repeated invocation

726

401

 16 130

866 833

2275

3324

757

382

 16 70

767 711

1827

3680

(a) privcalls vs. common C library calls (Intel)

 0

 2000

 4000

 6000

 8000

 10000

 12000

pri
vc
all
32

pri
vc
all
64

em
pty

ma
llo
c(3
2) ioc

tl
ge
ttid op

en

pri
ntf
('A
'*3
2')

N
u
m
b
e
r
o
f
C
y
c
le
s

single invocation
repeated invocation

1065 1102

 50
536

2463 2310

4755

11210

1081 992

 50 285

2289 2077

4182

10523

(b) privcalls vs. common C library calls (AMD)

Fig. 4: Microbenchmarks of privcall and privcall64 on Intel - (a) and AMD (b)

amount of added latency is inevitable since we perform a
chain of control transfers to securely invoke the privcall
routines. We also conducted the microbenchmark in two
varying setups. In the first setup, we built executables
that make a single invocation of each call (privcalls,
library calls), and we produced the results by executing the
executables 1000 times. In the second setup, we measure
the latency of 1000 consecutive invocations of each call in a
loop. These two setups represent the two situations where
privcall is infrequently called and frequently called. The
latencies of the privcalls are measured in the number
of cycles consumed, alongside the latencies of common
C library calls. The microbenchmarks provide a general
context into the latency of LOTRx86’s privilege switches, and
we further evaluate its overhead in private key protection in
webservers in §7.3
Single invocation. Figure 4 shows the microbenchmark
results for privcall32 and privcall64 on Intel and AMD
machines. For both types of privcalls, the latency of the
privcalls are on par or faster with simple libc functions
such as ioctl().
Repeated invocation. It is noticeable that the latency of
both types of privcalls does not improve drastically. On
the Intel machine, both privcall32 and privcall64 do
not improve when repeatedly called whereas some of the
other calls, such as gettid() dropped from 549 to 387.
As to this result, we surmise that the control flow transfer
chain used in our architecture affects the caching behavior of

100

102

104

106

108

1010

LO
TR
x8
6

(PU
32
)
LO
TR
x8
6

(PU
64
) mm

ap RP
C

N
u
m
b
e
r
o
f
C
y
c
le
s

load_password()
check_password()

18.7k 15.4k
92.0k

998.4k

3.6k 3.2k
34.5k 100.3k

(a) LOTRx86 on Intel

100

102

104

106

108

1010

LO
TR
x8
6

(PU
32
)
LO
TR
x8
6

(PU
64
) mm

ap RP
C

N
u
m
b
e
r
o
f
C
y
c
le
s

load_password()
check_password()

31.3k 28.1k
164.4k

1592.1k

5.1k 4.5k
58.3k 99.8k

(b) LOTRx86 on AMD

Fig. 5: Execution time comparison of test program using
LOTRx86 PrivUser32 and PrivUser64 vs. traditional
memory protection mechanisms. Y-axis is in log scale.

the processor negatively. Also, the libc and kernel’s system
call invocation have been extremely well optimized for a
long period of time. Hence, we plan to investigate possible
optimizations that can be applied to LOTRx86 in the future.
privcall32 vs. privcall64 The particular
microbenchmark does not involve any system calls,
allowing us to compare the two types of privcalls directly.
privcall64 shows noticeable latency improvement over
privcall32 on the Intel machine (757 vs. 382 in repeated
invocation), while the two show similar cycles on the
AMD machine (1081 vs. 992). However, the invocation
latency alone cannot serve as an effective measure for their
performance in general applications. We further discuss the
real-world performance of PrivUser and PrivUser64 with
our LOTRx86-enabled webserver example in §7.3.

7.2 Comparison with Traditional Memory Protection
Techniques

We implemented a simple demonstration in-process
memory protection using LOTRx86, page table manipulation
technique implemented with mmap and mprotect, and
a socket-based remote procedure call mechniasm (from
<rpc/rpc.h>).
Test program. Our simple program first loads a password
from a file into the protected memory region, then receives
an input from the user via stdin to compare it against the
protected password. In more detail, we implemented two
functions load_password and check_password using the
three protection mechanisms to evaluate their performance
overhead. For page-table-based method, we use mprotect
to set the page that contains the load_password and
check_password and the page dedicated for storing the
loaded password to PROT_NONE. In the case of the RPC
mechanism, we place the two measured functions and the
password-storing buffer in a different process and make
RPCs execute the functions remotely.
Performance overhead comparison. The measurements for
the execution time of the two functions, implemented with
three different mechanisms, are illustrated in Figure 5.
We averaged the results from 1000 trials (the y-axis
is in log scale). The results show that LOTRx86 with
PrivUser32 proves to be much faster than the two
traditional methods by a large margin. On Intel PC
(Figure 5a, LOTRx86 greatly reduces the number of
cycles consumed of load_password by 79.3% (18,728

12

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

 0

 1

 2

 3

 4

 5

100B 512B 1K 5K 20K 100K 512K
 0

 20

 40

 60

 80

 100

L
a
te
n
cy

 (
m
s/
re
q
)

O
ve
rh
e
a
d

 (
%
)

File size

Vanilla NGINX
w/ LOTRx86 (PU32)
w/ LOTRx86 (PU64)

LOTRx86 (PU32) Overhead (%)
LOTRx86 (PU64) Overhead (%)

(a) Nginx latency measurements on Intel

 0

 1

 2

 3

 4

 5

100B 512B 1K 5K 20K 100K 512K
 0

 20

 40

 60

 80

 100

L
a
te
n
cy

 (
m
s/
re
q
)

O
ve
rh
e
a
d

 (
%
)

File size

Vanilla NGINX
w/ LOTRx86 (PU32)
w/ LOTRx86 (PU64)

LOTRx86 (PU32) Overhead (%)
LOTRx86 (PU64) Overhead (%)

(b) Nginx latency measurements on AMD

Fig. 6: SSL KeepAlive response latency measured with with varying file sizes on Nginx with LOTRx86 (PrivUser and
PrivUser64)

vs. 91952.9 cycles) and by ~99.99% (18,728 vs. 998,352.3
cycles), compared to mmap and RPC-based implementation,
respectively. LOTRx86 with PrivUser64 mode enabled
shows similar levels of improvements over the traditional
techniques; LOTRx86 with PrivUser64 marked 15382.3
in load_password and 3240.2 cycles in check_password.
Expectably, LOTRx86 shows a clear performance advantage
over the traditional mechanisms in the same experiment on
the AMD machine (Figure 5b). Regarding the performance
difference between the two execution modes of LOTRx86,
we observe that PrivUser64 performs better than PrivUser
in both functions; PrivUser64 performs 17.9% faster in
load_password and 10.9% in check_password.

7.3 LOTRx86-Enabled Web Server
To develop a proof-of-concept LOTRx86-enabled webserver,
we made changes to LibreSSL and the Nginx web
browser. Specifically, we replaced parts of the software
that accesses private keys with a privcall routine that
performs the equivalent task. In the resulting webserver’s
process address space, the private key always resides
in the PrivUser memory space. Therefore, any arbitrary
memory access (e.g., buffer over-read in HeartBleed) is
thwarted. Only through the pre-defined privcall routines,
the webserver can perform operations that involve the
private key.
Implementation. During its initialization, Nginx
loads the private key through a function called
SSL_CTX_use_PrivateKey_file. This function performs
a series of operations to read the private key and then
parse the contents into an ASN1 structure. The function
eventually produces an RSA structure that LibreSSL uses
during SSL connections. We re-implemented the function
using privcalls. In our version of the function, the
opening of the file and loading its contents into memory
are performed in PrivUser mode, and the structures that

contain the private key or its processed forms are stored in
the PrivUser memory space. For passing arguments, we
created a custom C structure that contains the necessary
information that needs to be passed via privcalls. Once
the private key is converted into an RSA data structure,
it is stored safely in the PrivUser memory space until it
needs to be accessed during the handshake stage in an
SSL connection. During the handshake, the server digitally
signs a message using the private key to authenticate
itself to its client. We modified the RSA_sign() such that
it makes privcalls to request operations involving the
RSA structure. In more detail, we copy the message to be
signed in the argument page shared between user mode
and PrivUser mode that is designated by liblotr.

The LOTRx86-enabled libreSSL and Nginx were compiled
to 32-bit (PrivUser32) and 64-bit (PrivUser64). Since the
two supported PrivUser execution modes share the same
privcall interface, we were able to compile the webserver
implementation to both PrivUser modes with only minor
changes. One factor that may induce the performance
difference between the two modes is the argument passing.
This allows us to run the same benchmark on the two
PrivUser modes and evaluate their performances.

Performance measurements. We used the ab apache
benchmark tool to perform a benchmark similar to the
one performed in [14], a work that leverages hypervisor
to achieve a similar objective to LOTRx86. Using the tool,
we make 10,000 KeepAlive requests to the server, then the
server responds by sending a data block back to the client.
In the benchmark, we measured the average execution time
from the socket connection to the last response from the
server. The client that runs ab to perform the benchmarks,
was measured to have an end-to-end latency of around
5ms ~8ms to the webserver. On the other hand, the local
client is placed in the same machine as the webserver to
better capture the latency induced by LOTRx86. We also

13

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

varied the size of the requested file size to represent different
configurations. (we used {100B, 512B, 1k, ... 100k, 500k} and
[14] uses {5k, 20k, 50k}). The results are shown in Figure 6.

The additional performance overhead due to LOTRx86
mainly comes from the execution mode transition (user
mode to PrivUser32 or PrivUser64 mode). A total of three
privcall invocations are made in opening and loading the
contents of the private key file into a buffer in PrivUser
memory space, and a single privcall to sign the message
using the private key.

Both LOTRx86 with PrivUser32 and PrivUser64 show
similar performance characteristics over the varied file sizes.
PrivUser32 shows the worst case at 512B with 70.5% on
Intel. However, the performance overhead attenuates as the
file size increases. For instance, 21.0% overhead is observed
for 100K, and the overhead becomes nearly negligible for
512K with 4.8%. PrivUser32 performs marginally better
in AMD machines for most file size cases; notably, it
showed 53.1% in 512B. The PrivUser64 mode of LOTRx86
mostly surpasses the PrivUser32 mode in all cases and on
both machines. On the Intel machine, the worst case was
measured to be 45.3% when the file size was 1K. However,
it marked around 30% to 35% overhead in most (100B, 512B,
5K, 20K) cases and showed low overhead for larger file sizes
(16.6% at 100K and 3.3% at 512K). While slightly higher, the
performance overhead measured on the AMD machine was
similar to that of the Intel machine.
PrivUser32 vs. PrivUser64. in webserver performance.
Our experiment shows PrivUser64 mode brings a notable
performance increase in latency-sensitive workloads. The
performance increase in the webserver experiment is
not directly proportionate to the pure latency differences
shown in PrivUser32 vs. PrivUser64 microbenchmark
(Figure 4). We surmise that the largest factor responsible
for the performance gain in PrivUser64 is the performance
difference between the 64-bit mode and the 32-bit
mode. Also, there might be microarchitectural negative
performance side effects from switching between 64-bit
and 32-bit modes. That is, it is highly unlikely that
the microarchitectural optimizations have taken the case
of bitness change during program exchange. In all, we
conclude that the LOTRx86 PrivUser64 lowers the effort
required to port an application to use LOTRx86 and
brings performance gains in general applications, as shown
through our experiment.

8 RELATED WORK

The LOTRx86 architecture creates a new protected domain
in user space using only the existing features through its
unique design. LOTRx86 can be a practical alternative to
the recently introduced hardware security features when
the software must be deployed to general users. In this
section, we discuss previous work on user-space memory
protection and system privilege restructuring methods for
system fortification.
Alternative Privilege Models. Nested kernel [30]
introduced a concept of inner-kernel that takes control
of the hardware MMU by deprivileging the original kernel
by disabling a subset of its Ring 0 power. By removing
all privileged instructions that may disable memory

protection, Nested Kernel protects itself and the kernel
memory mappings. Nested Kernel exports a virtual MMU
interface that allows the deprivileged kernel to request
sensitive memory management operations explicitly.

Dune leveraged the Intel VT-x virtualization technology
to provide user-level programs with privileged system
functionalities that were only allowed to kernels [31]. Dune
migrates a user-level process in Ring 0 of the VT-x non-
root mode, allowing the process to enjoy kernel privileges
securely. This process in Dune Mode is dependent on the host
kernel, and makes hypercalls to invoke the root-mode kernel
system calls.

The x86-32 hypervisor implementation before the
introduction of Intel’s hardware-assisted virtualization
features [32], [33], made use of the intermediate Rings
and segmentation to achieve virtualization. Hypervisor
implementations [34], [35], [36] deprivileged the operating
system kernel by making them run in the intermediate
Rings, then enforced segmentation to protect the in-memory
hypervisor.
Use of hardware features. Some works employed the
x86-32 segmentation feature for application memory
protection [37], [38](and as aforementioned in early
hypervisor implementations). Both Native Client(NaCl) and
Vx32 provide a safe is a user-level sandbox that enables safe
execution of guest plug-ins to the host program. Also, The
Nacl sandbox has adopted SFI to compensate for the lack of
segmentation in x86-64 [39].

Processor architectures have been extended to support
user-space memory protection. Intel has recently introduced
Software Guard eXtensions (SGX) that creates an enclave
in which a predefined set of code and data can be
protected [10]. It also provides new instructions to invoke
the code residing in the enclave. Furthermore, Intel has
been planning for the release of SGX version 2, which will
support dynamic memory management [40].

Many works have leveraged the memory partitioning
processor feature, MPK, to implement intra-process
isolation [18], [19], [41]. LOTRx86 regards portability as
one of the main design objectives while MPK requires
hardware support and thus is not supported on older and
legacy systems. Regarding performance, MPK’s memory
protection domain switching is known to consume 11-
260 cycles [18], while privcall64 was shown to consume
about 400 cycles on average. One challenge in adapting
MPK is the necessity of removing unintended occurrences
of MPK configuring instruction called wrpkru, a non-
privileged instruction that can be abused to nullify the
memory isolation. LOTRx86, on the other hand, has kernel-
maintained privilege descriptor (e.g., the LDT) and uses
hardware-defined callgates to switch privileges.

The fragmented hardware support for application-level
memory protection served as a central motivation for
our approach. Our design does not rely on any specific
hardware feature and preserves portability. However, there
are differences in the attack model and security guarantees.
SGX distrusts kernel, and the protected user memory within
its enclave stays intact even under kernel compromise.
On the other hand, LOTR-x86 is incapable of operating
in a trustworthy way when the kernel is compromised.
Nevertheless, we argue that our work presents a unique

14

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

approach that achieves in-process memory protection while
preserving portability.

Hypervisor-based Approaches: A number of works have
leveraged hypervisors to protect applications in virtualized
systems. memory [14], [15], [42], [43], [44], [45], [46]. xMP
[47] leveraged the new virtualization hardware feature
available on x86 processors to implement efficient intra-
process isolation. The new feature allows a user process
inside a VM to initiate a EPTP switching with a VMFUNC
instruction without causing a VM exit. SEIMI [48] achieves
intra-process isolation through the combination of the
Supervisor Mode Access Prevention (SMAP) and virtualization
features. Hypervisor-based approaches leverage hypervisor-
controlled page tables and other hypervisor control over
the virtualized system to ensure the trustworthiness
of applications and system services. Similar to SGX,
hypervisor-based approaches are designed on the premise
that the kernel is vulnerable or possibly malicious.
Additionally, these works assume the presence of a
hypervisor on the system. On the contrary, we propose a
portable solution that does not require special hardware
features or virtualization technologies.

Process/thread level partitioning. Isolating program
components into separate processes have been the
traditional privilege separation method [3], [4], [5],
[37], [49]. In essence, placing program components into
process-level partitions aims to achieve complete address
space separation. However, the approach presents many
disadvantages. First, the approach inevitably involves a
Inter-Process Communication (IPC) mechanism to establish a
communication channel between the partitions so that they
can remotely invoke functions (i.e., Remote Procedure Calls
(RPC)) in other partitions and pass arguments as necessary.

The endeavor for in-application privilege separation
continued, and more recent work used threads as a unit of
separation compartment that prevents leakage of sensitive
memory [6], [7], [8], [50]. Chen et al. [9] pointed out that
even the thread compartments are still too coarse-grained,
introduce a high-performance overhead due to page table
switches, and require developers to make structural changes
to their program. Their work, Shreds takes advantage of
the memory domain feature on the ARM architecture to
create a secure code block within the program. However, the
Domain-based memory partitioning is only available and
has been deprecated on AARCH64.

Our approach is fundamentally different from the
previous work; the process and thread-level protection
retrofit the protection mechanisms supported by the
operating system kernel. However, our approach creates
a new privilege layer in between the user and the kernel
for the protection of sensitive application code and data.
Another significant difference is that our approach does not
require a full address space switch or runtime page table
modifications.

Address-based isolation. Software-based fault isolation
techniques [37], [38], [39], [51], [52], [53], [54] employ
software techniques such as compilers or instrumentation
to create logical fault domains within the same address
space, often to contain code execution or memory access.
SFI is often used to partition an untrusted module into a

sandbox to protect the host program [37], [38], [39], [54].
More recently, WebAssembly [55] has been gaining traction
as a byte-code virtual machine that incorporates mature SFI
to create a sandbox for executing untrusted code in web
browsers. Intel’s MPX [12] technology had been introduced
to provide hardware support for address-based isolation
techniques3.

Address-based isolation techniques can protect
application secrets by applying bound checking to the
program’s load and store instructions that can potentially
access the sensitive memory addresses [56]. On the other
hand, ConfLLVM [57] proposes a process memory layout
that reduces the overhead of runtime checks, whose
effectiveness is shown through its MPX or x86 segment
register enforcement mechanism.

LOTRx86 creates a protected domain called PrivUser
that consists of an isolated memory space and execution
mode. Direct performance comparison between address-
based and domain-based techniques can be difficult. For
instance, address-based isolation techniques often require
strong CFI defenses to be in place [56], [58] while LOTRx86
(and similar domain) includes a controlled control transfer
between the two domains.
Encryption and in-register data protection. Several works
have explored the in-memory encryption and register-only
computation of in-process sensitive data. DynPTA [59]
keeps the sensitive data encrypted inside memory and
selectively allows decrypting the data into the registers.
Ginseng [60] protects application secrets from the untrusted
OS kernel according to its attack model through the use of
in-register data protection and memory encryption.
Automatic isolation and partitioning Automated
identification of in-process secrets and their isolation
have been studied through a number of existing works [49],
[57], [59], [61], [61], [62]. DynPTA [59]’s selective encrypted
data access scheme is backed by automatic identification
of secret-accessing instructions achieved through its static
and dynamic data-flow tracking. Similarly, Ginseng [60]
and ConfLLVM [57] also automatically isolates sensitive
data with respect to developer annotations. Glamdring [61]
achieves source-level, function-granular automatic program
partitioning for SGX, using static data-flow analysis.
CryptoMPK [62] focuses on automatic identification and
MPK-based protection of sensitive cryptographic data.

LOTRx86’s isolation is similar to that of so-called
enclaves, as seen in the SGX model. Hence, using LOTRx86
inherently requires a manual porting process.
GPU for secure computation Besides, PixelVault [63]
proposed leveraging commodity GPUs such that they serve
as secure key storage as well as an isolated cryptographic
computation environment.

9 LIMITATIONS AND FUTURE WORK

LOTRx86 proposes a novel approach to application memory
protection. However, the architecture is still in its infancy.
We describe the limitations of the current prototype and
discuss issues that need to be addressed.

3. Intel MPX has been deprecated since Linux kernel 5.6 and GCC 9

15

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

SMEP/SMAP. Intel’s SMEP and SMAP [32] prevent
supervisor mode (Ring0-2) from accessing or executing U-
pages. SMEP does not affect LOTRx86 since PrivUser does
not execute any code in u-pages. However, SMAP prevents
PrivUser mode from accessing the argument page shared
with user mode. One possible solution is to implement
a system call or an ioctl call that toggles the SMAP
enforcement such that PrivUser mode can fetch data from
the shared page. Note that kernel’s copy_from_user API
also temporarily disables SMAP to copy from the user-
supplied pointer to the argument.
Per-process kernel memory unmapping for PrivUser64.
We plan to investigate the feasibility of isolating kernel
memory space on a per-process basis. The PrivUser64
support relies on the presence of KPTI that isolates the
kernel memory space from the user and PrivUser64
mode. While a large portion of Intel-based x86 processors
requires KPTI, the latest and future (e.g., 12th gen and
later) iterations supposedly do not require KPTI. Not to
mention that AMD-based x86 processors have not been
affected by Meltdown, and thus KPTI is disabled by
default on AMD machines. KPTI accompanies a system-
wide overhead since it has a noticeable impact on kernel
entry and exit [27]. Our evaluation of PrivUser64 allowed
us to confirm the approach’s viability in terms of general
application performance. Hence, we regard adapting the
well-optimized kernel memory space isolation in the KPTI
implementation such that it is only applied to processes with
the LOTRx86’s PrivUser64 mode enabled.
Further optimization. We believe there is room for further
optimizations for the LOTRx86 architecture. However,
finding resourceful optimization guides for using the
intermediate Rings was absent due to their rare usage in
modern operating systems. However, we plan to investigate
further to improve the performance of our architecture.
Porting effort. Porting a program to use LOTRx86 to protect
its secrets requires a manual porting process. This includes
possible incompatibilities that may arise with the required
compilation to 32-bit (in case of PrivUser32) and using the
intermediate Rings. Further investigation on compatibility
issues with various programs and partial or full automation
of the porting process remains a future direction.

10 CONCLUSION

We presented LOTRx86, a novel approach that establishes
a new user privilege layer called PrivUser that protects
and safeguards secure access to application secrets. The
new PrivUser memory space is protected from user
mode access. We introduced the privcall interface that
provides user mode a controlled invocation mechanism
of the PrivUser routines to securely perform operations
involving application secrets. Our design introduced unique
privilege and control transfer structures that establish a new
user mode privilege. We also explained how our design
satisfies the security requirements for the PrivUser layer
to have a distinct execution mode and memory space.
In our evaluation, we showed that the latency added by
a privcall is on par with frequently used C function
calls such as ioctl and malloc. We also implemented

and evaluated the LOTRx86-enabled Nginx web server that
securely accesses its private key through the privcall
interface. Using the Apache ab server benchmark tool, we
measured the average keep-alive response time of the server
to find the average overhead incurred by LOTRx86 in various
response file sizes. The average overhead is limited to
30.40% on the Intel processor and 20.19% on the AMD
processor.

11 ACKNOWLEDGMENTS

This work was supported by National Research Foundation
of Korea (NRF) Grant by the Korean Government through
(NRF-2022R1C1C1010494), Institute of Information
Communications Technology Planning Evaluation
(IITP) grant funded by the Korea government (MSIT)
(2022-0-01199), Research on Security of 5G-data-intensive
Computing Platforms Based on Disaggregated Architecture
(IITP-2020-0-00666), the High-Potential Individuals
Global Training Program)(2021-0-01587), the National
Research Foundation of Korea(NRF) grant (No. NRF-
2020R1A2C2101134), and the Office of Naval Research
(ONR) through Award N00014-18-1-2661.

REFERENCES

[1] D. A. Wheeler, “Preventing heartbleed,” Computer, vol. 47, no. 8,
pp. 80–83, Aug 2014.

[2] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer, and
V. Paxson, “The matter of heartbleed,” in Proceedings of the 2014
Conference on Internet Measurement Conference, ser. IMC ’14. New
York, NY, USA: ACM, 2014, pp. 475–488. [Online]. Available:
http://doi.acm.org/10.1145/2663716.2663755

[3] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege
escalation,” in Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12, ser. SSYM’03. Berkeley, CA, USA:
USENIX Association, 2003, pp. 16–16. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251353.1251369

[4] D. Kilpatrick, “Privman: A library for partitioning
applications,” in 2003 USENIX Annual Technical
Conference (USENIX ATC 03). San Antonio, TX:
USENIX Association, Jun. 2003. [Online]. Available:
https://www.usenix.org/conference/2003-usenix-annual-
technical-conference/privman-library-partitioning-applications

[5] D. Brumley and D. Song, “Privtrans: Automatically partitioning
programs for privilege separation,” in Proceedings of the
13th Conference on USENIX Security Symposium - Volume 13, ser.
SSYM’04. Berkeley, CA, USA: USENIX Association, 2004,
pp. 5–5. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1251375.1251380

[6] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge:
Splitting applications into reduced-privilege compartments,”
in Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 309–322. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1387589.1387611

[7] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer,
“Enforcing least privilege memory views for multithreaded
applications,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. New
York, NY, USA: ACM, 2016, pp. 393–405. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978327

[8] J. Wang, X. Xiong, and P. Liu, “Between mutual trust and
mutual distrust: Practical fine-grained privilege separation in
multithreaded applications,” in Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference, ser. USENIX ATC
’15. Berkeley, CA, USA: USENIX Association, 2015, pp.
361–373. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2813767.2813794

[9] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu, “Shreds: Fine-
grained execution units with private memory,” in 2016 IEEE
Symposium on Security and Privacy (SP), May 2016, pp. 56–71.

16

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/2663716.2663755
http://dl.acm.org/citation.cfm?id=1251353.1251369
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/privman-library-partitioning-applications
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/privman-library-partitioning-applications
http://dl.acm.org/citation.cfm?id=1251375.1251380
http://dl.acm.org/citation.cfm?id=1251375.1251380
http://dl.acm.org/citation.cfm?id=1387589.1387611
http://doi.acm.org/10.1145/2976749.2978327
http://dl.acm.org/citation.cfm?id=2813767.2813794
http://dl.acm.org/citation.cfm?id=2813767.2813794

[10] I. Corperation, “Intel® software guard extensions (intel sgx),”
https://software.intel.com/en-us/sgx, 2018, last accessed Feb 27
, 2018,.

[11] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications
from an untrusted cloud with haven,” ACM Trans. Comput. Syst.,
vol. 33, no. 3, pp. 8:1–8:26, Aug. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2799647

[12] I. Corperation, “Introduction to intel® memory protection
extensions,” https://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions, 2018, last
accessed Feb 22 , 2018,.

[13] J. Corbet, “Memory protection keys,” https://lwn.net/Articles/
643797/, 2015.

[14] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting
memory disclosure with efficient hypervisor-enforced intra-
domain isolation,” in Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15.
New York, NY, USA: ACM, 2015, pp. 1607–1619. [Online].
Available: http://doi.acm.org/10.1145/2810103.2813690

[15] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports,
“Overshadow: A virtualization-based approach to retrofitting
protection in commodity operating systems,” SIGPLAN Not.,
vol. 43, no. 3, pp. 2–13, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1353536.1346284

[16] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user
space,” in 27th USENIX Security Symposium (USENIX Security 18).
Baltimore, MD: USENIX Association, Aug. 2018, pp. 973–
990. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/lipp

[17] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 1–19.

[18] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte,
M. Sammler, P. Druschel, and D. Garg, “ERIM: Secure,
efficient in-process isolation with protection keys (MPK),” in
28th USENIX Security Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, Aug. 2019, pp. 1221–
1238. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/vahldiek-oberwagner

[19] M. Hedayati, S. Gravani, E. Johnson, J. Criswell,
M. L. Scott, K. Shen, and M. Marty, “Hodor: Intra-
process isolation for high-throughput data plane libraries,”
in 2019 USENIX Annual Technical Conference (USENIX ATC 19).
Renton, WA: USENIX Association, Jul. 2019, pp. 489–504.
[Online]. Available: https://www.usenix.org/conference/atc19/
presentation/hedayati-hodor

[20] A. Limited, “Building a secure system using
trustzone® technolog,” http://infocenter.arm.com/help/
topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2009.

[21] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi,
T. Kim, M. Peinado, and B. B. Kang, “Hacking
in darkness: Return-oriented programming against secure
enclaves,” in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, 2017, pp. 523–
539. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/lee-jaehyuk

[22] T. W. David Kaplan, Jeremy Powell, White
Paper: AMD Memory Encryption, http://amd-
dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/
AMD_Memory_Encryption_Whitepaper_v7-Public.pdf, AMD,
April 2016.

[23] “musl libc,” https://www.musl-libc.org, 2018, last accessed Jan
23, 2018.

[24] I. Corperation, “System v application binary interface,”
https://software.intel.com/sites/default/files/article/402129/
mpx-linux64-abi.pdf, 2018, last accessed Feb 21 , 2018,.

[25] L. K. Organization, “The linux kernel archives,” https://
www.kernel.org, 2018, last accessed April 2 , 2018,.

[26] J. Corbet, “Kernel page-table isolation merged,” https://lwn.net/
Articles/742404/, 2017.

[27] ——, “Kaiser: hiding the kernel from user space,” https://
lwn.net/Articles/738975/, 2017.

[28] N. Inc, “Nginx,” https://www.nginx.com, 2018, last accessed Feb
27 , 2018,.

[29] OpenBSD, “Libressl,” http://www.libressl.org, 2017, last accessed
Feb 27 , 2018,.

[30] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and
V. Adve, “Nested kernel: An operating system architecture
for intra-kernel privilege separation,” SIGARCH Comput. Archit.
News, vol. 43, no. 1, pp. 191–206, Mar. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2786763.2694386

[31] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, “Dune: Safe user-level access to privileged cpu
features,” in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 335–348. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387913

[32] Intel Corporation, Intel® 64 and IA-32 Architectures Software
Developer’s Manual, December 2016, no. 325462-061US.

[33] AMD64 Architecture Programmer’s Manual, http:
//developer.amd.com/wordpress/media/2012/10/
24593_APM_v21.pdf, AMD, May 2013.

[34] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the art of virtualization,” in Proceedings of the nineteenth ACM
symposium on Operating systems principles, ser. SOSP ’03. New
York, NY, USA: ACM, 2003, pp. 164–177. [Online]. Available:
http://doi.acm.org/10.1145/945445.945462

[35] O. Corporation, “Virtualbox technical documentation,” https://
www.virtualbox.org/wiki/Technical_documentation, 2017, last
accessed Aug 23, 2017.

[36] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y.
Wang, “Bringing virtualization to the x86 architecture with
the original vmware workstation,” ACM Trans. Comput. Syst.,
vol. 30, no. 4, pp. 12:1–12:51, Nov. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2382553.2382554

[37] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A
sandbox for portable, untrusted x86 native code,” in Proceedings of
the 2009 30th IEEE Symposium on Security and Privacy, ser. SP ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 79–93.
[Online]. Available: http://dx.doi.org/10.1109/SP.2009.25

[38] B. Ford and R. Cox, “Vx32: Lightweight user-level sandboxing
on the x86,” in USENIX 2008 Annual Technical Conference, ser.
ATC’08. Berkeley, CA, USA: USENIX Association, 2008, pp.
293–306. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1404014.1404039

[39] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen, “Adapting software fault isolation
to contemporary cpu architectures,” in Proceedings of the 19th
USENIX Conference on Security, ser. USENIX Security’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 1–1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1929820.1929822

[40] Intel Software Guard Extensions Programming Reference,
https://software.intel.com/sites/default/files/managed/48/
88/329298-002.pdf, INTEL, Oct 2014.

[41] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel MPK),”
in 2019 USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019, D. Malkhi and D. Tsafrir, Eds.
USENIX Association, 2019, pp. 241–254. [Online]. Available: https:
//www.usenix.org/conference/atc19/presentation/park-soyeon

[42] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: Secure applications on an untrusted operating system,”
SIGPLAN Not., vol. 48, no. 4, pp. 265–278, Mar. 2013. [Online].
Available: http://doi.acm.org/10.1145/2499368.2451146

[43] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and
W. Drewry, “Minibox: A two-way sandbox for x86 native
code,” in 2014 USENIX Annual Technical Conference (USENIX ATC
14). Philadelphia, PA: USENIX Association, 2014, pp. 409–420.
[Online]. Available: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/li_yanlin

[44] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,” in
2010 IEEE Symposium on Security and Privacy, May 2010, pp. 143–
158.

[45] J. Yang and K. G. Shin, “Using hypervisor to provide
data secrecy for user applications on a per-page basis,”
in Proceedings of the Fourth ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’08. New

17

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

https://software.intel.com/en-us/sgx
http://doi.acm.org/10.1145/2799647
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
http://doi.acm.org/10.1145/2810103.2813690
http://doi.acm.org/10.1145/1353536.1346284
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://www.usenix.org/conference/atc19/presentation/hedayati-hodor
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://www.musl-libc.org
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://www.kernel.org
https://www.kernel.org
https://lwn.net/Articles/742404/
https://lwn.net/Articles/742404/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://www.nginx.com
http://www.libressl.org
http://doi.acm.org/10.1145/2786763.2694386
http://dl.acm.org/citation.cfm?id=2387880.2387913
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://doi.acm.org/10.1145/945445.945462
https://www.virtualbox.org/wiki/Technical_documentation
https://www.virtualbox.org/wiki/Technical_documentation
http://doi.acm.org/10.1145/2382553.2382554
http://dx.doi.org/10.1109/SP.2009.25
http://dl.acm.org/citation.cfm?id=1404014.1404039
http://dl.acm.org/citation.cfm?id=1404014.1404039
http://dl.acm.org/citation.cfm?id=1929820.1929822
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
http://doi.acm.org/10.1145/2499368.2451146
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin

York, NY, USA: ACM, 2008, pp. 71–80. [Online]. Available:
http://doi.acm.org/10.1145/1346256.1346267

[46] Y. Kwon, A. M. Dunn, M. Z. Lee, O. S. Hofmann, Y. Xu,
and E. Witchel, “Sego: Pervasive trusted metadata for efficiently
verified untrusted system services,” SIGOPS Oper. Syst. Rev.,
vol. 50, no. 2, pp. 277–290, Mar. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2954680.2872372

[47] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis,
and M. Polychronakis, “xmp: Selective memory protection for
kernel and user space,” in 2020 IEEE Symposium on Security
and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer
Society, may 2020, pp. 563–577. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/SP40000.2020.00041

[48] Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang, Y. Lai, Y. Kang,
and M. Yang, “SEIMI: Efficient and Secure SMAP-Enabled Intra-
process Memory Isolation,” in 2020 IEEE Symposium on Security
and Privacy (SP), 2020, pp. 592–607.

[49] S. Liu, G. Tan, and T. Jaeger, “Ptrsplit: Supporting general pointers
in automatic program partitioning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 2359–2371.

[50] S. Kamara, P. Mohassel, and B. Riva, “Salus: A system for
server-aided secure function evaluation,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security, ser. CCS
’12. New York, NY, USA: ACM, 2012, pp. 797–808. [Online].
Available: http://doi.acm.org/10.1145/2382196.2382280

[51] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the Fourteenth
ACM Symposium on Operating Systems Principles, ser. SOSP ’93.
New York, NY, USA: ACM, 1993, pp. 203–216. [Online]. Available:
http://doi.acm.org/10.1145/168619.168635

[52] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula, “XFI: Software Guards for System Address Spaces,”
in Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, ser. OSDI ’06. Berkeley, CA, USA: USENIX
Association, 2006, pp. 75–88. [Online]. Available: http://
dl.acm.org/citation.cfm?id=1298455.1298463

[53] S. McCamant and G. Morrisett, “Evaluating sfi for a cisc
architecture,” in Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 15, ser. USENIX-SS’06. Berkeley,
CA, USA: USENIX Association, 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267336.1267351

[54] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan,
“RockSalt: Better, Faster, Stronger SFI for the x86,” in
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’12. New York,
NY, USA: ACM, 2012, pp. 395–404. [Online]. Available:
http://doi.acm.org/10.1145/2254064.2254111

[55] WebAssembly, “Webassembly,” https://webassembly.org, 2021.
[56] S. A. Carr and M. Payer, “Datashield: Configurable data

confidentiality and integrity,” in Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, ser. ASIA
CCS ’17. New York, NY, USA: ACM, 2017, pp. 193–204. [Online].
Available: http://doi.acm.org/10.1145/3052973.3052983

[57] A. Brahmakshatriya, P. Kedia, D. P. McKee, D. Garg, A. Lal,
A. Rastogi, H. Nemati, A. Panda, and P. Bhatu, “Confllvm: A
compiler for enforcing data confidentiality in low-level code,”
in Proceedings of the Fourteenth EuroSys Conference 2019, Dresden,
Germany, March 25-28, 2019, G. Candea, R. van Renesse, and
C. Fetzer, Eds. ACM, 2019, pp. 4:1–4:15. [Online]. Available:
https://doi.org/10.1145/3302424.3303952

[58] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity
hardware,” in Proceedings of the Twelfth European Conference on
Computer Systems, ser. EuroSys ’17. New York, NY, USA:
ACM, 2017, pp. 437–452. [Online]. Available: http://doi.acm.org/
10.1145/3064176.3064217

[59] T. Palit, J. F. Moon, F. Monrose, and M. Polychronakis, “DynPTA:
Combining Static and Dynamic Analysis for Practical Selective
Data Protection,” in 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 2021,

pp. 1919–1937. [Online]. Available: https://doi.org/10.1109/
SP40001.2021.00082

[60] M. H. Yun and L. Zhong, “Ginseng: Keeping secrets
in registers when you distrust the operating system,” in
26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society, 2019. [Online]. Available: https:
//www.ndss-symposium.org/ndss-paper/ginseng-keeping-
secrets-in-registers-when-you-distrust-the-operating-system/

[61] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. M. Eyers, R. Kapitza,
C. Fetzer, and P. R. Pietzuch, “Glamdring: Automatic application
partitioning for intel SGX,” in 2017 USENIX Annual Technical
Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14,
2017, D. D. Silva and B. Ford, Eds. USENIX Association,
2017, pp. 285–298. [Online]. Available: https://www.usenix.org/
conference/atc17/technical-sessions/presentation/lind

[62] X. Jin, X. Xiao, S. Jia, W. Gao, H. Zhang, D. Gu, S. Ma, Z. Qian,
and J. Li, “Annotating, tracking, and protecting cryptographic
secrets with cryptompk,” in 2022 2022 IEEE Symposium on Security
and Privacy (SP) (SP). Los Alamitos, CA, USA: IEEE Computer
Society, may 2022, pp. 473–488.

[63] G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Pixelvault: Using gpus for securing cryptographic
operations,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. New
York, NY, USA: ACM, 2014, pp. 1131–1142. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660316

Hojoon Lee is currently an assistant professor
at the Dept. of Computer Science and
Engineering at Sungkyunkwan University since
September 2019. Prior to his current position,
he spent one year as a postdoctoral researcher
at CISPA under the supervision of Prof. Michael
Backes. He received Ph.D. from KAIST in 2018,
advised by Prof. Brent Byunghoon Kang and
his B.S. from The University of Texas at Austin.
His main research interests lie in retrofitting
security in computing systems against today’s

advanced threats. His research interests include but are not limited
to Operating System Security, Trusted Execution Environments,
Program Analysis, Software Security, and Secure Machine Learning
Computation in Cloud.

Chihyun Song received his B.S. degree
in Computer Science from Yonsei University
(2017). He also received his M.S. in the
Graduate School of Information Security at
Korea Advanced Institute of Science and
Technology (KAIST), South Korea, in 2019. He
is currently in his Ph.D. course at the Division of
Computer Science, Korea Advanced Institute of
Science and Technology (KAIST). His research
interests are trusted execution environments
and intrakernel privilege separation.

Brent Byunghoon Kang is currently a
Professor in the Graduate School of
Information Security, School of Computing
at KAIST (Korea Advanced Institute of Science
and Technology). He received Ph.D. in
Computer Science from the University of
California at Berkeley, an M.S. from the
University of Maryland, College Park, and
a B.S. from Seoul National University. He
has also been with George Mason University
as an Associate Professor. His research

interests include designing trusted computing/execution environments,
OS kernel integrity monitors/memory defenses, hardware assisted
systems security, botnet defenses and dialect computing. He is
currently a member of the IEEE, the USENIX and the ACM.

18

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3192524

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2022 at 06:13:16 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/1346256.1346267
http://doi.acm.org/10.1145/2954680.2872372
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00041
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00041
http://doi.acm.org/10.1145/2382196.2382280
http://doi.acm.org/10.1145/168619.168635
http://dl.acm.org/citation.cfm?id=1298455.1298463
http://dl.acm.org/citation.cfm?id=1298455.1298463
http://dl.acm.org/citation.cfm?id=1267336.1267351
http://doi.acm.org/10.1145/2254064.2254111
https://webassembly.org
http://doi.acm.org/10.1145/3052973.3052983
https://doi.org/10.1145/3302424.3303952
http://doi.acm.org/10.1145/3064176.3064217
http://doi.acm.org/10.1145/3064176.3064217
https://doi.org/10.1109/SP40001.2021.00082
https://doi.org/10.1109/SP40001.2021.00082
https://www.ndss-symposium.org/ndss-paper/ginseng-keeping-secrets-in-registers-when-you-distrust-the-operating-system/
https://www.ndss-symposium.org/ndss-paper/ginseng-keeping-secrets-in-registers-when-you-distrust-the-operating-system/
https://www.ndss-symposium.org/ndss-paper/ginseng-keeping-secrets-in-registers-when-you-distrust-the-operating-system/
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
http://doi.acm.org/10.1145/2660267.2660316

	Introduction
	Background: The x86 Privilege Architecture
	The Ring Privileges
	Memory Protection
	Moving Across Rings

	Attack model and security guarantees
	Attack Model
	Security Guarantees

	LOTRx86 Design
	Privcall and Design Objectives
	Establishing PrivUser Memory Space
	Hardware constraint and Gate mode
	Inescapable Segmentation Enforcement
	Final gate design overview

	Implementation
	PrivUser mode Initialization
	LOTRx86 ABI
	Developing LOTRx86-enabled program
	Kernel changes

	Supporting 64-bit Execution Isolation with PrivUser64
	Establishing PrivUser64 Memory Space
	Improved Binary Compatibility
	Supporting Systems Calls inside PrivUser64
	Summary of Implementation Changes

	Evaluation
	Microbenchmarks
	Comparison with Traditional Memory Protection Techniques
	LOTRx86-Enabled Web Server

	Related Work
	Limitations and Future Work
	Conclusion
	Acknowledgments
	References
	Biographies
	Hojoon Lee
	Chihyun Song
	Brent Byunghoon Kang

