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SaVioR: Thwarting Stack-Based Memory Safety
Violations by Randomizing Stack Layout

Seongman Lee, Hyeonwoo Kang, Jinsoo Jang and Brent Byunghoon Kang, Member, IEEE

Abstract—Stack-based memory corruption vulnerabilities have been exploited, allowing attackers to execute arbitrary code and
read/write arbitrary memory. Although several solutions have been proposed to prevent memory errors on the stack, they are either
limited to a specific type of attack (either spatial or temporal attacks) or cause significant performance degradation. In this paper, we
introduce SaVioR, an efficient and comprehensive stack protection mechanism. The key technique involves randomization of the stack
layout to reduce its predictability and exploitability. SaVioR isolates an individual object from spatially and temporally adjacent
vulnerable objects and randomizes each object’s location, which prevents attackers from predicting the stack layout and thus reduces
the likelihood of memory errors being exploited. We implemented SaVioR based on the LLVM compiler framework and applied it to the
SPEC CPU2006 benchmarks and real-world applications. Our security evaluation showed that SaVioR provides a high degree of
randomness in the stack layout and thus reduces the likelihood of successful exploitation of spatial and temporal memory errors on the
stack. Our performance evaluation also demonstrated that it incurs a modest performance overhead (14%) with the SPEC CPU2006
benchmark suite, which improves performance compared to the state-of-the-art stack protection while achieving a comparable security
level.
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1 INTRODUCTION

THE program call stack is an attractive target for ad-
versaries because of the fundamental nature of its or-

ganization. That is, the call stack has a high degree of
spatial and temporal locality and its allocation algorithm is
statically determined. Because of this high spatial locality,
a vulnerable buffer and a valuable target (e.g., a return
address) can be spatially adjacent to each other on the stack.
Moreover, the high temporal locality allows an attacker who
recognizes the stack layout to control the content of an
uninitialized variable. These features make stack-based at-
tacks more attractive than heap exploitation, which requires
complex heap memory layout manipulation [1].

A variety of approaches have been proposed to de-
fend against stack-based memory errors. These approaches
can be roughly categorized into four classes: canary-based,
shadow stack-based, randomization-based, and comprehen-
sive protection. The canary-based approach [2], [3], [4], [5],
[6] has been widely deployed because of its low cost and
high compatibility. However, it can be bypassed via mem-
ory disclosure of the canary’s secret value [7]. Leveraging
the shadow stack [8], [9], [10], [11], [12], [13], [14], [15]
protects return addresses against buffer overflow attacks
but does not protect other variables, e.g., function pointers.
The randomization-based approach [16], [17], [18], [19], [20]
introduces additional randomness into the stack layout by
implanting a random-sized padding between stack frames,
randomly allocating vulnerable buffers, and randomizing
the base address of the stack region. However, these so-
lutions do not randomize the order of the stack frames,
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which means that the randomness is not sufficient to stop
the attacker from easily predicting the stack layout.

The major limitation of these three approaches is that
they provide partial protection. In particular, they only
focus on spatial attacks and do not hamper temporal or
more advanced spatial attacks. To address both spatial and
temporal attacks, the comprehensive randomization tech-
nique [21] focuses on increasing the unpredictability of the
stack layout by randomly allocating stack-resident objects,
e.g., vulnerable buffers, in the stack frame and stack frame
itself, and then reducing the predictability of stack frame
reuse. Unfortunately, this approach suffers from significant
performance overhead (28%) and has poor compatibility
with existing software such as C++ applications.

In this paper, we present SaVioR, an efficient and com-
prehensive stack protection mechanism that introduces un-
predictability into the stack layout. More specifically, SaV-
ioR takes advantage of the fact that 64-bit virtual address
space is plentiful and creates multiple stacks distributed
sparsely. Then, SaVioR randomly allocates stack-resident
objects and stack frames itself into one of the multiple stacks
at each function invocation. In particular, SaVioR introduces
two techniques: Vulnerable Buffer Isolation (VBI) and Stack
Frame Randomization (SFR). VBI randomizes and isolates
the location of variables that might be vulnerable to spatial
attacks (these variables are also known as attack vectors).
This creates a huge gap between vulnerable variables and
valuable variables (called target variables in this paper) and
thus hinders spatial attacks. SFR randomizes the stack frame
allocation and introduces random-sized padding, which
randomizes the absolute and relative address of stack-
resident objects and avoids the reuse of recently deallocated
stack frames, to prevent temporal attacks.

We implemented SaVioR based on LLVM compiler
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frameworks and have evaluated its efficiency using the
SPEC CPU2006 benchmark suite and real-world web server
applications. To demonstrate the effectiveness of SaVioR, we
conducted statistical and empirical security analyses. In par-
ticular, we used four stack-based real-world vulnerabilities1

in the empirical security analysis and observed that SaVioR
effectively impedes them. Our evaluation demonstrates that
SaVioR provides a high level of randomness in the stack
layout and provides comprehensive protection against spa-
tial and temporal attacks on the stack with only moderate
performance impacts (13%). In summary, this paper makes
the following contributions:

• SaVioR provides comprehensive stack protection
against all existing spatial and temporal attacks
on the stack: intra-frame, inter-frame, use-after-free
(UaF), and uninitialized read (UR) attacks.

• We propose a new way to randomize stack-resident
objects using pointer mirroring. For portability and
applicability, we implemented SaVioR based on the
LLVM compiler framework.

• To demonstrate the efficiency and effectiveness of
SaVioR, we applied SaVioR to SPEC CPU2006 and
PARSEC 3.0 benchmark suites and popular real-
world applications. We show that SaVioR achieves
better runtime performance than the state-of-the-art
stack memory protection at a comparable security
level.

2 BACKGROUND & RELATED WORK

We describe existing approaches to mitigate stack-based
memory corruption attacks and their limitations.
Canary-based Defenses. To prevent stack-based buffer
overflows, canary-based defenses [2], [3] place a secret
value, called a canary, before return addresses and check
its integrity upon returning from a function. Moreover, more
advanced approaches [4], [5], [6], [22] have been proposed to
compensate for the shortcomings of the previous defenses.
For example, Dynaguard [5] and RAF SSP [22] have been
proposed to prevent byte-by-byte brute-force attacks on the
canary. They re-randomize the canary value in the forked
process at runtime. As another example, PCan [4] introduces
an unmodifiable and unbypassable canary by leveraging
ARMv8.3-A Pointer Authentication.

Because of their low-overhead and high-compatibility,
these approaches are widely adopted in practice. However,
they assume that the return address is intact if and only if
the canary is intact. Therefore, if the canary is exposed to an
attacker through an information leak (e.g., buffer overread),
the attacker can overwrite the canary with the leaked value.
Hence, the attacker can modify the return address without
spoiling the canary value on the stack. Moreover, these
defenses cannot prevent non-contiguous buffer overflow
attacks such as an arbitrary write through a stale pointer.
Randomization-based Defenses. Knowledge of the mem-
ory layout is a general prerequisite for successful exploita-
tion. Therefore, researchers have proposed randomization

1. CVE-2013-2028, CVE-2019-11038, CVE-2019-9639, and CVE-2018-
1000140

of the memory layout to reduce its predictability. A well-
known example of this approach is ASLR [16], which is
widely deployed in modern operating systems. The ASLR
randomizes the base address of the stack segment. How-
ever, ASLR is vulnerable to information leakage attacks.
Moreover, the relative distance between two stack-resident
objects is not randomized, thereby making it easy to exploit
vulnerabilities on the stack without information leakage.

To address this shortcoming, fine-grained ASLR on the
stack [17], [18], [19], [20], [23] has been proposed. They 1)
introduce random padding between stack frames [17], [18],
[20], [23], 2) randomize the relative distance between stack-
resident objects or the alignment [19], [23], and 3) insert
random padding between buffer type and non-buffer type
objects [23]. However, these solutions provide weak stack
protection. For example, placing random padding between
stack frames might be effective against inter-frame attacks,
but it is not effective against intra-frame attacks, since the
layout of the stack-resident objects within the same frame is
unchanged. Moreover, the entropy in gap randomization is
limited. In addition, none of these methods randomize the
order of stack frames. More seriously, [17] inserts random
gaps that are too small (up to 64 bytes) and [23] determines
the size of random gaps between each object at compile-time,
not runtime. Therefore, an attacker can acquire the compiled
binary and reverse engineer the stack allocation algorithm
to predict the stack memory layout.
Shadow Stack-based Defenses. The aim of shadow stack
techniques [8], [9], [10], [11], [12] is to protect the integrity
of backward edges (i.e., returns). In these schemes, return
addresses on the stack are copied and isolated in the shadow
stack. Then, the integrity of the return addresses is verified
before function returns, which effectively prevents control-
flow hijacking attacks that attempt to modify return ad-
dresses. However, it does not protect other objects (e.g.,
function pointers) on the stack. Moreover, these approaches
have to instrument call/ret instructions, which are fre-
quently executed at runtime, hence incurring significant
performance overhead.

To reduce the high overhead of the shadow stack tech-
nique 2, researchers have proposed a variant of shadow
stack methods called safe stack [13], [14], [15], [18], [24], [25].
This approach isolates valuable stack-resident objects (e.g.,
return addresses and spilled registers) in the safe stack and
thus protects them from an attack abusing the vulnerable
buffers. However, the vulnerable buffers themselves can
still be targets of an attack depending on which objects
they maintain (e.g., a function pointer array). Therefore,
the effectiveness of this approach is limited to preventing
buffer-to-non-buffer attacks.

Comprehensive Protection. For a comprehensive solution
against spatial and temporal memory safety violations,
Chen et al. introduced StackArmor [21]. StackArmor ran-
domizes the allocation of stack frames at each unsafe func-
tion invocation; hence, stack frames are randomly allocated
on the stack in a non-contiguous and sparse way, which

2. Intel has recently introduced a new hardware-enforced shadow
stack, called Intel Control-Flow Enforcement Technology (Intel CET),
as part of the Tiger Lake architecture in 2020. This will be discussed in
detail in Section 7.3.
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Fig. 1: SaVioR design overview. VBI ensures that attack vectors (e.g. Vuln Buffer) and target variables (e.g., R) are not adjacent
and separated onto different virtual stacks. SFR modifies the conventional stack frame organization by spreading the stack frame
over virtual stacks and introducing random padding between stack frames. Both VBI and SFR make the results of spatial and
temporal attacks unpredictable. Note that the random padding scheme is not shown for simplicity, since the size of each random
padding is normally bigger than that of a stack frame.

introduces unpredictability into the stack layout and the
reuse of stack frames. However, it incurs an average runtime
overhead of 22% (except for the zero initialization overhead)
on the SPEC CPU2006 benchmarks. Moreover, StackArmor
fails to support C++ applications because its implemen-
tation depends on a binary rewriter that is not sophisti-
cated enough to handle complex C++ binaries. SmokeStack
[19] also provides unpredictability to the stack layout. It
randomizes the order of stack variables at each function
invocation. However, it neither randomizes the stack frame
order nor introduces a random gap between stack frames.
Moreover, it does not protect control data (non-control data
is considered).

3 THREAT MODEL

We consider an attacker who can provide maliciously
crafted input to a vulnerable piece of software that has
spatial and temporal memory corruption vulnerabilities on
the stack. Moreover, we assume that the attacker has full
access to the compiled binary and is capable of reverse-
engineering it to determine the stack allocation algorithm.
Besides, the attacker can perform a limited number of brute-
force attacks to bypass SaVioR. Attempts with incorrect
addresses may cause the victim program to crash, and
the system administrator will detect the failed attack. Our
adversary model is consistent with those used in the related
works in this area [19], [21].

4 DESIGN

4.1 Overview
A traditional stack grows linearly, and stack-resident objects
are spatially and temporally adjacent to each other, which
means that the stack has a highly exploitable and predictable
memory layout. Hence, using this characteristic of the stack,
an adversary can easily predict the layout of the stack and
can reliably exploit spatial and temporal errors on the stack.

To introduce uncertainty into the stack memory layout,
SaVioR takes advantage of huge 64-bit virtual address space,
which creates multiple stacks and spreads out the stacks far
apart in the address space. Based on this, SaVioR randomly
spread out stack-resident objects across multiple stacks. This
enables stack-resident objects to be spatially and temporally
away from each other. This means that it reduces the likeli-
hood of memory errors being exploited because each object
is isolated and rarely reused. In particular, SaVioR intro-
duces two techniques, vulnerable buffer isolation (VBI) and
stack frame randomization (SFR), to isolate the vulnerable
variables and randomly shuffle the stack frame, respectively.

4.2 Vulnerable Buffer Isolation
VBI isolates vulnerable variables that could be used as an
attack vector from target variables spatially. VBI considers
any stack-resident object that might cause spatial memory
errors to be vulnerable and thus randomizes the location of
those variables at each function invocation.

Here, we describe in detail how VBI randomizes the
stack layout. Figure ?? depicts the stack layout in a legacy
application and a SaVioR-enabled application when three
functions are invoked in a row. The SaVioR-enabled applica-
tion has one main stack (Stack 0) and multiple virtual stacks
(Stacks 1–N) while the legacy application has the only one.
VBI randomly relocates all vulnerable variables and thus
isolates target variables from spatial memory errors. For
example, because Function A (highlighted in red) has the
vulnerable variable Vuln Buffer that should be relocated to
separate them from its frame, SaVioR relocated Vuln Buffer
into the randomly chosen Stack N, and thus it is separated
from the return address R. By doing so, the vulnerable
variable is not spatially adjacent to the valuable targets. (The
reason that the frame of Function A is placed on Stack 1
will be explained later.)

Note that, although the locations of vulnerable objects
are randomized, SaVioR ensures that the relocated objects



4

are always relocated on a different stack rather than the
current one. Therefore, it is hard to perform spatial attacks
on the relocated vulnerable object because the object is
completely separated from its stack frame. Furthermore,
vulnerable variables are randomly placed on one of the
stacks for each function call, which reduces the possibility
of reusing the memory that was recently used. Hence, as
well as spatial attacks, the VBI technique impedes temporal
attacks which exploit temporal locality.

4.3 Stack Frame Randomization
Although VBI isolates vulnerable attack vectors from target
variables, it does not randomize the other stack-resident ob-
jects, e.g., function pointers and decision-making variables,
which would be an attractive target for an attacker. In other
words, each variable that could be attacked remains in its
stack frame without randomization. Hence, an attacker with
access to the compiled binary can predict the location of
stack-resident objects that remain in the stack frame because
stack frames are (de)allocated and reused in a predictable
and deterministic manner.

To handle this problem and complement the VBI tech-
nique, SaVioR introduces SFR, which inserts a random-sized
padding between each stack frame and randomizes the
allocation of stack frames in a non-contiguous and out-of-
order way. One would think that VBI can also be deployed
to randomize the location of every variable in the stack
frames instead of randomizing the stack frames. However,
randomizing every variable introduces significant runtime
overheads because of the increased random number gen-
erations and has unacceptably poor locality. Therefore, we
randomize the location of the stack frame that contains the
potential target variables instead of randomizing individual
variables. We argue that a randomized stack frame can be
considered to be secure from spatial attacks despite the close
proximity of each other, because vulnerable variables are
separated from the stack frame by VBI.

Furthermore, SFR brings another benefit. In traditional
stack, stack frames are contiguously (de)allocated and thus
frequently reused on the stack according to the order of
function invocations and returns at runtime, which allows
an attacker to analyze the stack layout trivially. In contrast,
SFR assures us that the stack frame is not contiguous and not
reused frequently, which reduces the predictability of stack
frame reuse and thus makes the temporal attacks unreliable.

To illustrate how SFR works in practice, we refer again
to Figure ?? that depicts the layout of the SFR-applied stack
frames. For Functions A, B, and C, the stack frames are
located in Stack 1, 0, and N, respectively. In addition, after
randomly selecting one of the stacks in which the stack
frame will be placed, SFR inserts a random-sized padding
into the stack frame, as shown in the dotted box.

4.4 Identifying Stack Objects to be Randomized
During runtime, the call stack is extensively used, and
call/ret pairs are frequently executed, which means that
high locality of reference on the stack is necessary for
performance. SaVioR sacrifices the spatial and temporal
locality of reference on the stack for security. Moreover, SaV-
ioR inserts several instructions to randomize stack-resident

Spatial attack Temporal Attack VBI SFR
Out of Bounds UaF UR

Buffer 4 4

Aggregate 4 4

Addr-taken 4 4 4 4 4

VLA 4 4

Potential UR 4 4

TABLE 1: Summary of attack vectors and our defenses. The risk
that a type of vulnerable object is used for an specific attack is
marked in 4. The table also indicates which defense is used to
mitigate attacks, which is marked in 4. In case of the address-
taken type, SaVioR partially applies VBI to this type of variable;
thus, it is marked in 4.

objects. This is another root cause of performance degrada-
tion. In particular, we observed that SFR instrumentation
significantly decreases instructions per cycle (IPC) when
compared with a naive function call in the original program.
Hence, it is impractical to apply our approach to all func-
tions and stack objects. A trade-off between security and
performance needs to considered when these techniques
are applied. With that in mind, we decided to selectively
randomize the stack-resident objects.
VBI-applied objects. The identification of vulnerable ob-
jects to be VBI-applied is performed similarly to that of the
well-known stack protector provided by the GCC and Clang
compilers. Specifically, SaVioR adopts a policy that is similar
to that of -fstack-protector-strong to identify vulnerable
variables. This overestimates the set of objects that might
be vulnerable to spatial attacks; for example, it protects all
objects involved in pointer arithmetic operation with a non-
constant, and this could include an object that could be ac-
cessed in an in-bound and timely manner as vulnerable. We
argue that -fstack-protector-strong’s policy could cover
numerous vulnerable objects and is sufficient for VBI to use
for vulnerable object identification.

In detail, SaVioR applies VBI to 1) any type of array, 2)
any aggregate type that contains an array, and 3) VLA. In the
case of address-taken variables, SaVioR does not apply VBI
to an individual address-taken variable like the other types
(1–3) of variables. Instead, SaVioR creates a frame with only
address-taken variables and applies SFR to it. This separates
address-taken variables from its stack frame. Although, they
remain vulnerable to spatial attacks among themselves, we
argue that the likelihood that an address-taken variable will
cause spatial attacks is lower than that of the others (1–3).
SFR-applied objects. The aim of SFR is to avoid the reuse
of a previously returned stack frame by a newly created
stack frame and randomize the location of target variables.
By doing so, we can prevent an adversary from abusing
normal stack behavior that linearly locates the stack frames
for sub-function calls and reuses previous stack frames. In
particular, temporal error-based attacks such as triggering
UR and UaF can be hampered by SFR. Therefore, SFR
is moderately applied to the functions that may have a
temporal error, i.e., UaF or UR errors.

Stack-based UaF (use-after-return) vulnerability are
rarely reported [26]. Most UaF attacks target heap-allocated
objects because the adversary can explicitly manage them.
Nevertheless, we still consider the stack-based UaF in our
attack model because of its severity. The Towelroot exploit
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Fig. 2: Virtual address space in a SaVioR-protected application

(CVE-2014-3153) on Linux kernel 3.14.5, which exploits the
kernel stack UaF vulnerability, allows users to obtain root
access to Android devices. A dangling pointer on the stack
can be created by a object deallocated by a sub-function
return. Using an address-taken variable is one of the most
likely situations to create the dangling pointer. Therefore,
SaVioR regards functions with an address-taken variable as
an attacker’s preferred targets and applies SFR to them.

In the case of UR, statically detecting stack-allocated
objects that are vulnerable to UR is challenging. Because the
place to initialize a variable and the place to use the variable
are separated across multiple functions, it is difficult to
pinpoint an UR. Hence, modern compilers and language
runtime systems zero-initialize all memory allocations. For
example, an experimentally adopted solution in the LLVM
compiler zero-initializes any local variable without giving
it an initial value [27]. Unfortunately, recent publications
[28], [29] have analyzed the cost of zero-initialization and
have shown that it is high. Instead of zero-initializing all the
variables, the -Wunintialized option in the Clang compiler
is one way to detect the uninitialized use of stack variables.
However, this option provides poor coverage; for example,
in the Clang 8.0.0 compiler, this option is neither flow-
sensitive nor field-sensitive for aggregate types. In GCC
5.5, it is flow-sensitive but not field-sensitive. Table 3 gives
a comparison of whether our detection tool and recent
compilers performs flow-, field-, or byte-sensitive analysis.

To detect any variable that may cause an uninitialized
use of stack memory, SaVioR performs a straightforward
intra-procedural analysis that detects any variable that
might be accessed without proper initialization. This anal-
ysis is byte-level, path-insensitive, flow-sensitive, and field-
sensitive, but it is not context-sensitive. Hence, in the case
of address-taken variables that are passed as an argument
to a function, we conservatively consider these variables to
be vulnerable to UR attacks and apply SFR to them.

Note that the SFR is also applied to the functions to
which VBI has been applied. When only VBI is used, target
variables are placed in the same region without randomiza-
tion and thus become very predictable. If only SFR is used,
only the location of the stack frames is randomized, and
vulnerable and safe variables are left adjacent to each other
in the stack frame. By applying the two techniques together,
they complement each other’s weaknesses and introduce
additional randomness into the stack layout.

Virtual Address SpaceSign Extended

(a) x86_64

16 48

Sign Extended Virtual Address Space
Random 

bit
K

16 5 42

(b) SaVioR

Fig. 3: Format of a SaVioR pointer

4.5 Address Space Configuration & Stack Layout Ran-
domization

Here, we elaborate on how SaVioR configures its address
space and randomizes the stack layout.

4.5.1 Setting Up the Virtual Address Space

To implement the VBI and SFR techniques, we leverage
virtual address space on 64-bit systems. As shown in Figure
2, a SaVioR-enabled application’s address space is divided
into two types of regions: one regular region and multiple
stack-only regions. The regular region is similar to the address
space of a legacy process that maintains code, data, heap,
memory-mapped, and stack segments, but the available
address space is limited to b (<47) bits. From now on, we
assume that the regular region is limited to 42 bits, which is
configurable with a build option. (The reason why we chose
a 42-bit address space for describing our design is explained
in Section 4.5.3.) The remaining address space above 42 bits
is for the stack-only regions that each holds a virtual stack
corresponding to the original stack in the regular region.

Figure 3a shows the pointer representation in a x86_64
Linux process. The size of a pointer is 64 bits, but only the
least significant 48 bits are actually used; the 16 most signif-
icant bits are copies of bit 47 (sign-extension). Moreover, the
48-bit virtual address space is divided into two halves; the
upper and lower halves are reserved for the kernel and user,
respectively. We only consider the user address space.

Figure 3b shows the pointer representation in SaVioR.
The 47-bit virtual address space is evenly divided into 32
42-bit regions, each of which has different upper 5 bits,
which are referred to as random bits. The lowest address
space (random bit 0) is for the regular region, and the other
address spaces (random bits 1–31) are for the stack-only
regions. For each stack only-region, at process initialization,
SaVioR creates additional stacks in a way such that each
created stack has the same address range, from bits 41 to
0 as the regular stack, excluding the random bits. Figure 2
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shows the virtual address space configuration of a SaVioR-
enabled application when implemented as described.

4.5.2 Randomizing Stack Objects using Pointer Mirroring
SaVioR makes use of the random bits for randomizing vul-
nerable variables and stack frames. More specifically, SaV-
ioR prepares multiple stacks corresponding to the random
bits. Then, when a VBI/SFR-protected function is invoked,
stack-resident objects are randomly placed in one of the
multiple stacks in the regular region and the stack-only
regions. This is achieved by randomly changing the random
bits of the randomized stack object’s address. We call this
mechanism pointer mirroring. Although the pointer mirror-
ing technique was first introduced in the lowfat-stack [30],
which provides deterministic memory safety, our approach
is distinct in that it deploys this technique to randomly
relocate the location of stack-resident objects, not to locate
the region for placing objects.

For VBI-applied functions, SaVioR randomizes the vul-
nerable objects and modifies all stack access instructions to
reference randomly relocated objects. In addition, to apply
SFR protection, SaVioR instruments all call instructions in-
voking SFR-applied functions to relocate the stack frame by
randomizing the stack pointer (i.e., rsp in x86_64) Hence, it
does not need to modify stack access instructions.

4.5.3 Address Space Reduction
SaVioR, which makes use of some upper bits of the pointer
to randomize the location of stack objects, provides random-
ization at the cost of addressable virtual address space.

This is similar to the existing tagged pointer techniques
[31], [32], [33] that utilize the upper bits to hold metadata for
enforcing a security policy. Because the addressable virtual
address space limits the entropy of ASLR, pointer tagging-
based defenses, unfortunately, have a low degree of ASLR
entropy. Because these defenses provide deterministic spa-
tial memory safety that eradicates all memory corruptions,
it does not require ASLR which probabilistically mitigates
the exploitation of memory corruption after this memory
corruption has been triggered.

Similar to pointer tagging defenses, SaVioR encodes the
stack identification (number) in which the randomized stack
object will be located in the upper bits of a pointer. However,
on the contrary, SaVioR should be completely compatible
with and rely on ASLR because it introduces additional
randomization onto the stack. Hence, it is necessary to avoid
impacting the effectiveness of ASLR when reducing the
available address space; as the randomness entropy of SaV-
ioR (i.e., the number of stacks and random bits) is increased,
the effectiveness of ASLR is increasingly undermined.

Here, we describe the minimum amount of available
address space that is needed to provide the default ASLR
entropy in an x86_64 vanilla Linux kernel. A Linux kernel
defines four regions: the executable and brk regions, which
are placed from the lowest address, and the stack and
memory-mapped region, which are placed from the highest
address. The executable region contains an ELF binary and
has 28 bits of entropy for a PIE-enabled binary. The brk re-
gion is usually for the heap and has 13 bits of entropy. Next,
the memory-mapped region that contains libraries and the
memory-mapped area has 28 bits of entropy. Finally, the

1 #define SLR_ADDRESS_SPACE 42
2

3 uint64_t slr_random();
4

5 void* slr_alloca(void *ptr, uint64_t rnd) {
6 uintptr_t slr_ptr;
7 slr_ptr = (uintptr_t) ptr ^ (rnd << SLR_ADDRESS_SPACE);
8 return (void*) slr_ptr;
9 }

Listing 1: Helper Functions

stack region has 22 bits of entropy. Note that, because ASLR
is based on page-level granularity, the 12 least significant
bits are fixed. This means that the number of addressable
bits for n-bit entropy ranges from 0 to 2n+12. In summary,
to support the entropy of ASLR in x86_64 Linux, at least
40, 25, 40, and 34 bits of addressable address space must be
reserved for the ELF, heap, and memory-mapped, and stack
segments, respectively (this does not take into account the
size of each segment). This means that an address space of
at least 42 bits is required to provide the default level of
ASLR entropy in x86_64 Linux.

Given that five random bits only support 32 stacks,
SaVioR cannot be considered to be secure against memory
errors. Thankfully, Intel has proposed 5-level paging [34]
that extends the addressable address space from 48 bits to
57 bits. This enables SaVioR to support up to 14 random
bits, which can deploy up to 16,384 (214) stacks per thread
while not diminishing the entropy of ASLR on 64-bit Linux.
Recently, 5-level paging has become available in the latest
Intel Ice Lake U/Y-series processors designed for laptops
and mobile devices. This will be discussed in more detail in
Section 7.

5 IMPLEMENTATION

We implemented SaVioR for Linux-5.0.8 on the x86_64 ar-
chitecture based on the LLVM/Clang-8.0.0 compiler frame-
work. The LLVM compiler framework is required for the
static instrumentation and runtime library. Besides, the ker-
nel is modified to shrink the virtual address space of a
SaVioR-protected application.

5.1 Static Instrumentation in LLVM

Here, we explain how the static instrumentation modules
for VBI and SFR are implemented.

Helper Functions. slr_random in line 3 in Listing 1 gen-
erates a random number. This is implemented as an LLVM
x86 intrinsic, not as a function. We implemented an AES-
based random number generation based on Intel AES-NI
instruction sets in a leakage-resilient way; the generated ran-
dom number and random secret key are stored in dedicated
registers, xmm14 and xmm15, respectively. Once the application
has been compiled with SaVioR, SaVioR guarantees that the
dedicated registers do not spill into memory.

To generate a random number, slr_random runs one
aesenc instruction and then obtains a 128-bit random value.
The generated value consists of the upper 64 bits and the
lower 64 bits of the xmm14 register, which can be extracted
using the pextrq and movq instructions, respectively. The
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int main(int argc, char* argv[])
{
char buf[8];

+ char *rnd_buf;
+ uint64_t rnd;
+ rnd = slr_random();
+ rnd_buf = slr_alloca(&buf, rnd);

- gets(buf);
- puts(buf);
+ gets(rnd_buf);
+ puts(rnd_buf);
}

+ lea -8(%r15), %r15 (1)
+ mov %rsp, (%r15) (2)
+ mov %rcx, %rsp (3)

<setting arguments>
callq *%rax

+ mov (%r15), %rax (4)
+ lea 0x8(%r15), %r15 (5)
+ mov %rax, %rsp (6)

Fig. 4: VBI & SFR instrumentation

generated random value is used for randomizing the stack-
resident objects by VBI and SFR. One advantage of the
compiler-based approach is that SaVioR is implemented
as a compiler option so that a developer can selectively
enable SFR and VBI. When both SFR and VBI are activated,
SaVioR first uses SFR to randomize the stack frame. Then,
vulnerable variables are randomized by VBI. This allows
the VBI to use the random value remaining after SFR is
complete, which avoids the need to regenerate the random
value. That is, the lower and upper parts of the random
number are used for applying SFR and VBI, respectively.

slr_alloca in line 5 is used to implement the pointer
mirroring mechanism, which is used for VBI and SFR in-
strumentation to randomize vulnerable variables and stack
frames, respectively. It takes two arguments: (1) pointer
(ptr) which is either a vulnerable object or a stack pointer
and (2) random number (rnd) which is used to choose the
stack where the randomized object will be placed. slr_al-
loca mirrors the ptr into the one of the stacks by setting
the random bits. In detail, slr_alloca enforces the location
of an object to be randomized in a way that it is always
relocated onto a different stack other than the current one,
ensuring that vulnerable variables are completely separated
from its original stack frame. To accomplish this, in line 7,
rnd value is XORed with the current stack number in which
the object is placed (the current stack number is embedded
in the random bits of ptr).

VBI Pass. The VBI pass locates alloca instructions in
LLVM IR, which contains information of the stack variable
(e.g., type and length), and instruments all functions that
contain a vulnerable variable, as defined in Section 4.4.

How the VBI instrumentation works is presented as
pseudo code in Figure 4 (left). It instruments the main func-
tion prologue to randomize the location of the buffer (buf).
First, the instrumented main function invokes slr_random
to obtain a random value. For simplicity in the figure, we
assume that slr_random returns a non-zero random number
in the range [1, N), where N represents the number of
deployed stacks. This is because if slr_alloca takes a zero
value as an argument, it XORs the current stack number
with the zero value and thus does not separate vulnerable
buffers from its stack frame. However, in a real imple-
mentation, the LLVM compiler inserts some instructions
that (1) mask out all bits of a random value except those

bits required to randomly select a stack from among the
available stacks and (2) ensure that a non-zero random
number is passed to slr_alloca, which can be expressed
in the following way: “rnd = rnd % (2n - 1) + 1,” where
rnd and n represent a random value and the number of
random bits, respectively. Next, slr_alloca is invoked with
buf and rnd as arguments, which returns the randomized
buffer (rnd_buf). Lastly, the pass instruments all instructions
that reference the original buf to use the randomized one
rnd_buf through the replaceAllUsesWith LLVM API. Note
that helper function calls are inlined to reduce the perfor-
mance overheads.

SFR Pass. The SFR pass identifies all functions that
have an address-taken variable or an uninitialized use of a
variable. Besides, it instruments every call site of a VBI/SFR-
protected function for stack frame randomization.

To identify address-taken variables, the SFR instrumen-
tation module performs an intra-procedure data-flow anal-
ysis that tracks all uses of each alloca instruction and con-
siders it address-taken if it is passed as a function argument
and is involved in pointer arithmetic operations and integer
casting as a source operand.

To detect the use of uninitialized variables, our anal-
ysis builds on top of UniSan [35]. Our analysis performs
intra-procedure data-flow analysis in a flow-sensitive, path-
insensitive, and field-sensitive way. For every stack ob-
ject, this analysis tracks every execution path and checks
whether all uses of a stack object are dominated by the
proper initialization point. By doing so, the SFR pass can
determine whether a variable might be used without the
proper initialization (UR).

Before explaining the SFR instrumentation in detail, we
need to elucidate the stack pointer restore buffer (SPRB)
that holds the address of the caller’s stack frames. SFR
randomizes a stack frame before jumping to the function.
Hence, SFR should ensure that a function return has to
restore the caller’s stack frame. Otherwise, the caller will
lose it when returning. To this end, the SaVioR runtime
environment maintains SPRB. Whenever an SFR-protected
function call occurs, the current stack pointer is saved onto
the top of SPRB’s entry, and the corresponding stack pointer
is restored when returning the function.

We hide the SPRB from an adversary through informa-
tion hiding, which takes advantage of the huge 64-bit virtual
address space that is sufficient to hide a sensitive region.
Moreover, SaVioR ensures that there are no references to
it that do not go through the dedicated register. In our
implementation, we chose the r15 register, which is a callee-
saved register and the least-used register in hand-written
assembly, as the dedicated register for the SPRB. Previous
studies [14], [15] have influenced this decision.

Figure 4 (right) shows how SaVioR instruments the call
site of the SFR-protected function in assembly code. In this
figure, we assume that the stack pointer rsp is already ran-
domized through slr_alloca, which takes as its argument
the stack pointer (rsp) and returns the randomized one
in the rcx register. The SPRB is a full descending stack,
and thus the dedicated register r15 points to the highest
address containing the valid one. Hence, (1) lea instruction
decrements r15 by 8 bytes before storing the current stack
pointer, (2) the stack pointer is stored in the top entry of
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SPRB, and (3) the stack pointer is set to the randomized
stack pointer stored in rcx. Likewise, the restoration of
the stack pointer is executed in reverse order, except the
randomization of the stack pointer (steps 4–6).

The SFR pass needs to access the stack pointer (i.e., rsp)
and the dedicated r15 register to randomize the stack frame.
To this end, we use the existing intrinsics llvm.stacksave
and llvm.stackrestore, which retrieve and restore the stack
pointer at IR-level, respectively. In the case of the r15 reg-
ister, we utilize LLVM InlineAsm, which allows us to insert
inline assembly instructions to access the r15 register. Al-
though the llvm.read_register and llvm.write_register
intrinsics, which respectively get and set a specified register,
exist, LLVM 8.0.0 does not fully implement them.

Difference between VBI and SFR passes. Like the
VBI pass, the SFR pass operates on the LLVM IR level.
The main difference between them is that the SFR pass
must perform a whole-program analysis to identify all the
functions to be protected and applies SFR instrumentation
to the corresponding call-sites, whereas the VBI pass does
not. Therefore, while the VBI pass runs on each individual
IR file, the SFR pass does not perform the analysis and
instrumentation until the link-time optimization (LTO) pass
links all IR files into a single IR file.

Callee Identification. The SFR pass applies the SFR
instrumentation to all direct and indirect call-sites whose
target is potentially a VBI- or SFR-protected function. In
detail, for direct call-sites, the SFR pass clearly identifies
the target of the direct call-sites. However, for indirect calls,
the SFR pass performs type-based analysis to identify all
potential targets of the indirect call-sites. More specifically,
it applies SFR to indirect call sites if the types of the
arguments of the indirect call site are the same as one of the
functions to be SFR-protected (or VBI-protected). Moreover,
we conservatively assume that universal pointer types such
as char* and void* are equivalent.

Backend Modification. We modified the LLVM backend
to support the following: (1) random number generation
and (2) register reservation. First, both the VBI and SFR
passes must generate a random number for randomization.
To this end, we implemented the slr_random x86 intrin-
sic, which leverages Intel AES-NI instructions to generate
random numbers. Second, SaVioR ensures that only instru-
mented code can access the dedicated register. In contrast
to the GCC compiler, which provides the -ffixed flag to
prevent the compiled binary from accessing the specified
register, the LLVM compiler does not support the equivalent
compile options. Therefore, we modified the LLVM backend
for the x86_64 architecture to reserve the r15, xmm14, and
xmm15 registers.

5.2 Kernel Modification

The x86_64 Linux kernel provides a user process with a 47-
bit virtual address space. SaVioR trades the available space
for the randomization. However, we observed that Linux
kernel loads the PIE-enabled ELF binary above ELF_ET_-
DYN_BASE (0x555555554AAA ≈ 246), which means that there
are no remaining bits of a pointer for SaVioR. Therefore, we
modified the Linux kernel to map the ELF segments of a
process further down.

The kernel is responsible for loading the main executable
and the dynamic loader while creating a new process. The
ELF_ET_DYN_BASE specifies the lowest address where the dy-
namic loader will be loaded to maintain sufficient distance
between the dynamic loader and the non-PIE main binary.
However, given that most Linux distributors compile pre-
built packages as PIEs by default, we conclude that it is
reasonable to lower ELF_ET_DYN_BASE to 0x100000000 (4 GB).
This is in line with previous studies [36], [37].

In addition, we have to lower the address of the user
stack. The user stack is also created by the kernel loader
and is loaded with a negative random offset from STACK_TOP
(= TASK_SIZE). We defined STACK_TOP_SLR (242), which is
configurable upon the number of deployed virtual stacks,
and is used instead of STACK_TOP when the kernel loader
initializes a SaVioR-protected application. In total, these
changes consist of 19 lines of code in the Linux kernel diff.

5.3 Runtime Library

After the Linux kernel configures the address space of a
SaVioR-protected application, the compiler-rt runtime sup-
port library is responsible for 1) creating multiple virtual
stacks in the stack-only regions, 2) setting the dedicated
register r15 to point to the SPRB, 3) initializing dedicated
registers, xmm14 and xmm15, for storing the generated random
number and AES secret key, respectively, and 4) supporting
multi-threading and non-local jumps.

The runtime support library includes an initialization
function that leverages the constructor attribute, which is
executed before the main function. This initialization func-
tion creates multiple stacks for each stack-only region and
initializes the dedicated register r15. More specifically, it
locates the main stack created by the kernel using pthread_-
attr_getstack, which returns several attributes associated
the stack (e.g., the address and length). Then, it mirrors
the regular stack to the corresponding stack in the stack-
only Region 1, and the same procedure is repeated until
all mirrored stacks are created in every stack-only region.
Next, the dedicated register r15 is initialized to point the
SPRB. Lastly, to initialize xmm14 and xmm15 registers, the
runtime library uses Intel’s RdRand instruction which returns
a random number from a hardware-based entropy source.

To support multi-threading in a SaVioR-enabled applica-
tion, SaVioR creates multiple stacks and initializes dedicated
registers to hold per-thread metadata (i.e., the SPRB, ran-
dom number, and AES secret key) when a new thread is cre-
ated. Note that our implementation is thread-safe because
each per-thread metadata is allocated independently and
stored in per-thread hardware registers (i.e., r15, xmm14, and
xmm15). In detail, the LLVM compiler replaces pthread_cre-
ate calls with slr_pthread_create to perform a procedure
similar to that in the initialization function (constructor). It
also releases the SaVioR-generated memory via pthread_-
cleanup_push/pop when a thread is terminated.

Finally, non-local jumps are safely handled by modi-
fying Glibc’s setjmp/longjmp implementation. The setjmp
function saves the current execution context into a jmp_buf
structure. When longjmp is invoked with jmp_buf as an
argument, the execution context is restored from jmp_buf.
Thus, the control flow goes back to the point at which
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setjmp was invoked. Originally, a jmp_buf structure con-
tained callee-saved registers, which includes the r15 register.
However, to guarantee the confidentiality and integrity of
SPRB, it should not be pushed onto memory. Therefore, we
modified non-local jump implementation to not save the r15
register in jmp_buf. In detail, when longjmp unwinds the
stack, SaVioR also has to unwind the SPRB and adjust r15,
which points to the valid top entry of SPRB. Without proper
adjustment of r15, SPRB still holds the invalid entries that
point the unwound stack frame after the stack unwinding
has ended. Hence, SaVioR removes the entries that have
lower addresses than the current stack pointer because the
stack always grows downward, and thus, the value of the
caller’s stack pointer is always higher than that of the callee.
(The comparisons are done with a random-bit masked value
of the stack pointers.)

5.4 Compatibility
Given that it is common for an application to be linked
with (uninstrumented) third-party libraries, binary compat-
ibility and modularity support are key features needed for
wide adoption. In short, our approach achieves full binary
compatibility with uninstrumented libraries, but limited
modularity support.

Binary Compatibility. A SaVioR-enabled application can
invoke uninstrumented functions in a legacy library with
randomized variables as arguments without performance
penalties. Likewise, an uninstrumented code can invoke VBI
and SFR-protected functions.

Modularity Support. The VBI scheme is applied to the
function’s prologue and does not require a whole program
analysis. Therefore, if only VBI is applied, it supports mod-
ularity. For example, it does not require a main executable to
be re-compiled when a new VBI-enabled library is linked. In
contrast, because the SFR scheme is applied to the call-site
and requires a whole program analysis, it does not support
modularity. For example, assume that a main executable
is linked with a new SaVioR-enabled library without re-
compilation. In this case, it can still invoke a SFR-protected
function in the new library; however, the stack frame is not
randomized.

Assembly code. The implementation of SaVioR is based
on the LLVM compiler and thus cannot handle hand-
written assembly (e.g., inline assembly or assembly files).
For example, there are several assembly codes in glibc (e.g.,
setjmp/longjmp, getcontext/setcontext, and multiarch files)
Currently, we only support non-local jumps by redirecting
the invocation of setjmp/longjmp to the safe counterparts
(i.e., slr_setjmp/slr_longjmp). However, with additional
engineering effort, the remaining hand-written assembly
code can be handled in a similar manner.

5.5 Library Integration Level
To integrate third-party libraries into a SaVioR-enabled envi-
ronment incrementally, we provide three library integration
levels: (1) protected, (2) aware, and (3) unprotected.

• Protect: We call a library hardened with SaVioR a
SaVioR-protected library. This instrumented library
can enjoy the security guarantees provided by SaV-
ioR.

• Aware: We call a library that is aware of which reg-
isters are used for SaVioR-related secrets a SaVioR-
aware library. While this library is not compiled with
SaVioR and hence enjoys none of the memory safety
guarantees, it ensures that the dedicated registers are
never spilled into memory or inadvertently accessed.
An example of such a library is glibc, which currently
is not yet compiled with Clang/LLVM. Therefore,
we compiled glibc using the gcc compiler with the
-ffixed options (i.e., -ffixed-r15, -ffixed-xmm14,
and -ffixed-xmm15) to achieve SaVioR awareness.

• Unprotect: This library is only compatible with a
SaVioR-protected application, but there is no guar-
antee that the dedicated registers are never spilled
into memory.

6 EVALUATION

We evaluated the performance impact of SaVioR on the
SPEC CPU2006 and PARSEC 3.0 benchmark suites and real-
world applications, including Nginx and PHP web servers,
Memcached server, and p7zip. All experiments were per-
formed on an Intel i7-9700K CPU at 3.6 GHz and 32GB
of RAM, running Ubuntu 18.04 with Linux kernel version
5.0.21. We then evaluated the effectiveness of SaVioR using
a statistical security analysis and performed an empirical
security analysis against several common vulnerabilities
and exposures (CVEs).

6.1 Runtime overheads
6.1.1 SPEC CPU2006 Integer and Floating Point
Runtime overhead will be introduced by our VBI and SFR
instrumentations because they insert hardening instructions
and decrease the locality of references on the stack. To
quantify this performance degradation, we evaluated SaV-
ioR using all the C/C++ programs of the SPEC CPU2006
benchmark suite. This benchmark suite contains a set of
applications that are considered to be representative of a
wide range of real-world applications, e.g., a Perl interpreter
and bzip2. The benchmarks include both compute-bound
and memory-bound workloads; this is suitable for showing
an example of the worst-case overhead introduced by SaV-
ioR. We ran each benchmark test using its reference inputs
and measured the average runtime over five executions.
The baseline was compiled with -O3 optimization and LTO
enabled.

We ran all experiments with 1024 stacks and a maximum
random padding size of 1024 bytes because it provides a
reasonable degree of unpredictability in the stack layout.
Currently, to run with these parameter settings on Intel
x86_64 processors, a SaVioR-protected application only has
a 37-bit virtual address space for the regular region. In such
an environment, the process may crash unless the entropy
of ASLR is lowered or ASLR is turned off. Hence, we turned
off ASLR when running an application whose bits available
for the regular region were less than 42.

We summarize our SPEC measurements in Figure 5.
Overall, SaVioR has a geometric mean of 14.9% performance
overhead. Besides, to accurately compare the results with
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Fig. 6: Performance impact on Nginx

StackArmor, we have analyzed result from the C subset
of SPEC CPU2006 benchmarks specifically supported by
StackArmor. We found that SaVioR introduces a 10% run-
time overhead compared to the 22% introduced by StackAr-
mor (note that zero initialization overhead is not included),
which is approximately half of the overhead of StackAr-
mor with 1024 stack frames. The results show that 5 out
of 12 benchmarks, 400.perlbench, 445.gobmk, 453.povray,
458.sjeng, and 483.xalancbmk, incur significant runtime
overhead. 400.perlbench, 458.sjeng and 483.xalancbmk in-
tensively allocate/deallocate stack-resident objects and ac-
cess these objects much more frequently than the other
benchmarks. Interestingly, although 453.povray suffers the
highest performance overhead (around 122%), the stack is
rarely used. Instead, 453.povray frequently executes direct
and indirect function calls and the IPC is substantially
decreased from 2.43 to 1.55 (-36%) by the massive number
of SFR calls. In addition, this benchmark has the highest
increase in the page fault rate (×146) because the original
one has the smallest memory footprint, and our solution in-
creases that footprint substantially. In the case of 455.gobmk,
it is the most compute-bound benchmark in this benchmark
suite and its results are influenced by the number of exe-
cuted instructions, which is much higher than those of the
other benchmarks.

Likewise, as in 453.povray benchmark, 400.perlbench
and 483.xalancbmk 3 suffer huge performance penalties,
44% and 50%, respectively. Both benchmarks intensively

3. As described in Section 5.1, VBI can use the bits of the random
number remaining after SFR has been applied. However, if applying
VBI only, it has to generate new random number. Hence, in the
Xalancbmk benchmark, the overhead of the VBI-only one is comparable
with that of full protection.

Benchmark 1-Thread 2-Thread 4-Thread 8-Thread
PARSEC 3.0 7.81% 11.00% 11.89% 11.83%
p7zip 16.02 3.91% 11.50% 10.69% 9.93%
Memcached 1.6.8 0.42% 0.48% 0.47% 0.66%

TABLE 2: Performance overhead on 1, 2, 4, and 8 threads

use indirect function calls. The current implementation of
SaVioR finds the targets of indirect calls based on type
analysis and applies SFR to the call site if the type of the
arguments of the indirect call site are the same as one of the
VBI- and SFR-protected functions. Hence, an SFR-applied
indirect call site could execute the SFR hardening instruction
even when calling an unprotected (safe) function. Instead
of type-based analysis, point-to analysis could be used to
improve the performance of SaVioR in this case.

Surprisingly, two of the benchmarks (429.mcf, 456.hm-
mer) perform better than the original ones. These bench-
marks are memory-intensive, and a substantial portion of
their execution time is spent executing loops that contin-
uously access large arrays on the heap. SaVioR randomly
relocates and spread out vulnerable buffers and address-
taken variables, but reorders the rest of the safe variables
to be collected and become adjacent to the return address
and callee-saved register. This may increase the locality
of frequently accessed objects on the stack. In contrast,
although 458.sjeng is also a memory-intensive benchmark,
the frequently accessed large arrays are allocated on the stack
and thus considerable runtime overhead is added (25%).

6.1.2 I/O-intensive Web Server

To evaluate the efficiency of SaVioR on I/O-intensive ap-
plications, we have measured the throughput and latency
of a SaVioR-protected Nginx web server using Apache
HTTP server benchmarking tool. The benchmark simulates
8 workers receiving 500–1000 Keep-Alive requests of a file 5
to 50 KB in size. Our setting resembles the common usage
[38] and the whole procedure is repeated 10 times. The result
is shown in Figure 6, which reveals that the performance
degradation imposed by SaVioR (<7%) is acceptable.

6.2 Scalability

We also evaluated the scalability of SaVioR on the PARSEC
3.0 multithreaded benchmark suite as well as real-world
applications such as p7zip 16.02 and Memcached 1.6.8. All
experiments were performed on an Intel i7-9700K 8-core
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Fig. 7: Performance overhead on PARSEC 3.0
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processor. On the processor, up to 8 threads can run simul-
taneously without interfering with each other. Therefore, we
measured the performance overhead of all benchmarks on
1, 2, 4, and 8 threads, as summarized in Table 2.

The experiment results on PARSEC 3.0 are shown in
Figure 7 and Figure 8 for 12 out of the 13 benchmarks. 4 For
memory overhead, we measured the maximum resident set
size (RSS) for the tested benchmarks. The geometric mean of
the memory overhead with 8 threads is 96.5%, as shown in
Figure 8. Because SaVioR randomly relocates stack-resident
objects into multiple stacks, it increases the memory foot-
print overhead. Despite this high memory overhead, it has
moderate performance overheads on the PARSEC 3.0 bench-
mark suite. The geometric mean of performance overhead
with 8 threads incurred by SaVioR is 11.8%. As shown
in Figure 7, SaVioR scales fairly well with multi-threaded
applications.

4. The remaining benchmark (freqmine) utilizes OpenMP directives
(e.g., #pragma omp parallel) to execute a code block in a parallel
manner; when a compiler encounters such a directive during compile-
time, it generates an outlined code block that internally invokes
pthread_create to execute it concurrently. Unfortunately, our current
implementation of SaVioR cannot handle an outlined OpenMP code,
that is, it cannot substitute pthread_create with slr_pthread_create.

The p7zip benchmark includes LZMA compression and
decompression tests, which represent CPU- and memory-
intensive workloads. We executed the integrated benchmark
of p7zip with the default settings. The result showed a
pattern similar to that of the PARSEC benchmark and an
average runtime overhead of 9.9% for 8-threads. To bench-
mark Memcached (which is a key-value storage server and
is I/O intensive), we selected the memcslap benchmark
tool [39] to issue a 9:1 ratio of 100,000 get/set operations
and measure the time taken to load/store the requested
data. The concurrency level of the benchmark matched the
number of server threads. The increases in the measured
data load times were under 1%, which indicates that the
impact of SaVioR on I/O-intensive multithreaded server
applications is negligible.

6.3 Uninitialized-read Detection

We evaluated Clang’s -Wuninitialized option and our
detection tool against a regression test suite of the -
Wuninitialized option in the Clang source code (i.e.,
clang/testsuite/Sema/uninit-*). This test suite includes 70
test cases, i.e., 40 positive and 30 negative cases. In the case
of Clang, as expected, the results included neither false pos-
itives nor false negatives. In contrast, our tool obtained false
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struct mystruct {
int a;
int b;

} st;

st.a = 0xdeadbeef;
x = st.b;

(a) field-sensitive

struct mystruct {
int a;
int b;

} st;

printf("%d", st.a);
st.a = 0xdeadbeef;

(b) flow-sensitive

struct mystruct {
int a;
int b;
char c;

} st; // 12 bytes

st.c ='a';
x = *((char*)&st+10);

(c) byte-sensitive

int a;

*((char *)&a) = 'c';
x = a;

(d) byte-sensitive for
primitive types

Fig. 9: Details of the sensitivity test suite. (a) Field-sensitive test, (b) flow-sensitive test, and (c) byte-sensitive test for aggregate
types, (d) Byte-sensitive test for primitive types.

positives in 11 negative cases, but no false negatives. (Note
that these false positives do not weaken our protection.
Instead, they increase the number of SFR-protected func-
tions, but may harm performance.) Three of them occurred
because of a non-standard C extension (i.e., __block). Five
of them occurred because of unrealistic coding in real cases.
For instance, they include a self-initialization (e.g., int x
= x;) and an uninitialized read in an infinite loop (e.g.,
unsigned long flag; for(;;) (void) flag;), cases for
which Clang intentionally suppresses warnings. (Moreover,
such cases are optimized out or replaced with a unreachable
instruction in the optimization phases.) Lastly, three of them
occurred because the test cases assume that a function that
takes as an argument the address of a variable will initialize
that variable (e.g., int a; use(&a);), whereas our tool
considers such a function to be vulnerable.

In addition, we also ran our detection tools against
a test case for Clang’s -Wsometimes-uninitialized (i.e.,
clang/test/analysis/uninit-sometimes.cpp). This option is
equivalent to gcc’s -Wmaybe-uninitialized option, which
performs a more aggressive analysis than the -
Wuninitialized option, and this could lead to a high num-
ber of false positives. This test suite includes 30 test cases:
25 positive and 5 negative. In this case, Clang yields no false
positives and two false negatives. (Two false negative cases
serve as a to-do list.) Our tool produces no false negatives,
but does not pass all negative cases. Because our detection
analysis is path-insensitive, it assumes that all paths are
feasible and thus has poor precision, resulting in a high
number of false positives. However, we note again that
these false positives do not reduce the security guarantees
provided by SaVioR.

The above testing demonstrates that our uninitialized-
read detection tool is comparable to Clang’s -
Wuninitialized option. However, the test suite is tailored
to the detection of the uninitialized use of primitive types
(e.g., int or double), and thus does not guarantee that our
detection tool performs field-sensitive, flow-sensitive, and
byte-sensitive analyses for aggregate types (e.g., struct,
array, and union). Therefore, we manually created a test
suite in which a test case checks whether the analysis of
a given tool is field-sensitive, flow-sensitive, and byte-
sensitive. For example, as shown in Figure 9c, the use of a
partially uninitialized object is detected if a given tool is
byte-sensitive.

field-sensitive flow-sensitive byte-sensitive
gcc (<6) 7 3 7

gcc (≥6) 3 3 3

Clang 7 7 7

SaVioR 3 3 3

TABLE 3: Comparison of the sensitivity of various compilers
when handling aggregate types.

We tested gcc-5, gcc-6, Clang, and SaVioR on this test
suite. The results are summarized in Table 3. Although
this test suite does not contain any conditional statements
(e.g., if, for, or while), our tool can handle such test cases.
We model all kinds of memory objects such as primitive
types and aggregate types at byte-granularity. For example,
as shown in Figure 9d, our tool models a primitive type
variable (i.e., a 4-byte integer) as a byte sequence and thus
can detect the use of the partially initialized integer variable.
Likewise, our tool simply applies the byte-level memory
model to aggregate types and thus considers any aggregate
type variable to be a byte sequence. That is, the primitive
and the aggregate types are handled in the same manner
by our tool. Because our tool successfully passes the test
suites for the primitive type, which contains the complex
cases with conditional statements, we expect that our tool
will work properly for aggregate types in such test cases.

6.4 Security Analysis

To evaluate the effectiveness of SaVioR, we performed statis-
tical and empirical security analyses. The statistical analysis
indicates how secure SaVioR is in theory. This analyzes the
probability that an attacker can mount a successful mem-
ory corruption attack. In contrast, the empirical analysis
presents how secure SaVioR is in practice. We applied the
SaVioR defense against a set of CVEs in two real-world
applications, Nginx and PHP web servers.

6.4.1 Statistical Security Analysis
Because SaVioR is a comprehensive and probabilistic protec-
tion that mitigates all kinds of spatial and temporal memory
corruption attacks, we show the probability that successful
memory corruption attacks can be mounted for spatial and
temporal memory errors independently.

Let N be the number of deployed stacks and let P be
the maximum size of the random padding. We configured
the values of N and P to 1024 and 1024, respectively. This
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Fig. 10: Spatial attack

configuration is consistent with that of the performance
evaluation. Because the stack pointer must be aligned on
a 16-byte boundary in 86_64, the effective entropy is P/16.
In addition, we assume that an attacker has full knowledge
of our defense semantics.

Spatial Attacks. If an attacker misusing attackable vari-
ables corrupts or leaks the intended data exactly, we con-
sider the spatial attack to be successful. We classify spatial
attacks into four categories: 1) contiguous intra-frame, 2)
contiguous inter-frame, 3) non-contiguous intra-frame, and
4) non-contiguous inter-frame attacks.

Figure 10a illustrates two spatial attacks on legacy ap-
plications: intra-frame and inter-frame attacks. Intra-frame
attacks (highlighted in orange) can be mounted if an attack-
able buffer and a target variable are located in the same
stack frame. In contrast, inter-frame attacks (highlighted in
red) can be mounted if an attackable buffer and a target
variable are located in the different stack frames. There are
two ways to mount spatial attacks: contiguously and non-
contiguously. Contiguous spatial attacks corrupt the target
object while corrupting all unintended memory that ranges
from the end of the attackable object (i.e., a buffer) to the
intended object (e.g., the return address). One example of a
contiguous spatial attack is the traditional buffer overflow
attack. On the contrary, non-contiguous spatial attacks could
corrupt the desired object only without corrupting other ob-
jects unnecessarily. Non-contiguous attacks are more severe
than contiguous ones, which, for example, trivially bypass
the stack canary protection.

With respect to contiguous intra-frame attacks, because
VBI always isolates vulnerable variables from its stack
frame, the attacks cannot corrupt the target object such as
a return address. As shown in Figure 10b, the attackable
buffer is separated from its stack frame (Stack 1). It is
relocated to Stack 2, which prevents intra-frame attacks
from corrupting stack objects in func2’s stack frame. The
contiguous inter-frame attacks can be prevented by SaVioR
as well. For example, in Figure 10b, assume that an attacker
attempts to corrupt func_ptr in func1’s stack frame by abus-
ing attackable buffer. With SaVioR, attackable buffer
and func_ptr are separately placed in Stack 2 and Stack

N, which prevents this contiguous inter-frame attack. In
particular, this attack will inevitably touch a non-accessible
page (i.e., an unmapped or guard page) and will cause the
victim program to crash.

On the other hand, non-contiguous attacks could corrupt
target objects in other stack regions beyond its own stack
region, which allows the attacker to perform more advanced
attacks. That is, the non-contiguous attack can bypass the
defensive facilities (e.g., canary and guard page) and cor-
rupt the desirable objects. However, in the SaVioR-applied
application, the non-contiguous attack can also be hindered
due to the unpredictability added to the stack objects. Even
if the attacker abuses a write-what-where vulnerability,
she/he cannot corrupt the intended object without the exact
memory layout of the stack objects, e.g., the exact distance
between the vulnerable buffer and a target object.

In both the contiguous and non-contiguous attacks, the
probability that an attackable variable and a target variable
are located in the same stack region is 1/N . In addition, the
probability of predicting the offset between objects in a same
stack frame is 16/P . Therefore, both attacks can succeed
with a probability of 16/(N × P ). In our evaluation, N =
1024 and P = 1024 yields a probability of 0.00001 that the
attacker corrupts the intended memory.

Temporal Attacks. Figure 11 illustrates the organiza-
tion of the stack layout during UR attacks in legacy and
SaVioR-protected applications. Suppose that func1 calls
func2, which has an attacker-controlled memory, and then
func1 calls func3, which has an UR on the function pointer
func_ptr. If the variable func_ptr is allocated in the memory
that was previously allocated to the attacker-controlled
memory and reuses that memory without proper initializa-
tion, an attacker can hijack the control flow.

For legacy applications, Figure 11a shows two organiza-
tions of the stack layout after func2 (left) and after func3
(right) have been called. By calling func2, the attacker can
leave a malicious contents in attacker-controlled memory.
Next, func3 dereferences the uninitialized variable func_-
ptr, allowing arbitrary control-flow hijacking. This example
shows that because the UaF and UR attacks depend on stack
frame reuse, preventing this reuse lies at the heart of SaVioR.

By applying SaVioR, the probability that a newly created
stack frame is placed into the region where the previously-
used stack frame was located is 1/N . Moreover, the proba-
bility that the newly created frame starts at the same location
as the previous stack frame which might contain attacker-
controllable values is 16/P (see Figure 11b). Thus, the intro-
duced entropy of stack frame reuse is 16/(N × P ). Like the
case with the spatial attack, N = 1024 and P = 1024 yields
a probability of 0.00001 that a temporal attack overlaps the
attacker-controlled memory with a vulnerable variable.

Limitations. Note that the aforementioned odds are the
probability of success in a single trial of an attack and
for pinpointing (corrupting) the exact location of a target
variable. If an attacker is able to conduct attacks multiple
times, exploit a vulnerability using partial overwrites, or
perform de-randomization attacks (e.g., stack spray), our
defense can be weakened. For example, during the exploita-
tion of uninitialized-read vulnerability, even if the attacker
fails to cause a vulnerable object to reuse the memory that is
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controlled by the attacker, the attacker has further chances to
try as long as the uninitialized-read does not cause a crash.

Stack Spraying. An attacker could also mount advanced
de-randomization attacks, e.g., by filling the stack with a
number of malicious data. Such a strategy is essentially
similar to that of heap spray. Such de-randomization at-
tacks on the stack are referred to as stack spraying attacks
[40]. In detail, to reduce the randomization entropy and
bypass SaVioR’s protection, an attacker could launch a stack
spraying attack to fill the stack frame with a large number
of malicious data in the hope that the content of memory
where the uninitialized variable is located might overlap
with the sprayed data.

However, contrary to heap spraying attacks, stack spray-
ing attacks are more difficult to carry out because of the
nature of the stack allocation algorithm. For a heap, an
attacker typically can control the size of and number of
allocated (spray) data, because the heap is explicitly man-
aged via a heap management API such as malloc() or
free(). However, in the case of stack, the stack allocation
is determined at compiler time and the size of the allocated
variables are usually fixed and small. Moreover, the stack
is shared among all the executions in a thread and the
stack’s resident objects are implicitly allocated, deallocated,
and reused on the stack. This leaves the prepared spray data
open to being overwritten before the use of uninitialized
value and can lead to undefined behavior (e.g., program
crash).

6.4.2 Empirical Security Analysis
We performed an effectiveness evaluation on four CVEs.
In our experiments, we collected proof-of-concept (PoC)
exploit files for each CVE and manually confirmed the ex-
ploitability of each vulnerability when SaVioR was applied.

CVE-2013-2028 in Nginx 1.4.0. is a contiguous stack-
based buffer overflow vulnerability in the Nginx web server.
It triggers the integer signedness error, the value of which
is used for the size read by recv(); then a stack-based
buffer overflow attack can be mounted. In the SaVioR-

enabled application, the location of the vulnerable buffer
is randomly relocated in each function invocation and the
attackable buffer is always separated from its original stack
frame. Because of this separation, the attackable buffer is
located far from the canary and return address. Hence, the
intra-frame attack is hampered, that is, it cannot guess the
canary and fails to overwrite the return address. Even if an
attacker performs inter-frame attacks, it is difficult for him
or her to predict the exact location of the canary due to the
random padding and thus the attempt to mount the byte-
by-byte brute force attack fails.

CVE-2019-11038 in PHP-7.3.5. is an UR vulnerability
in a PHP server using libgd. The libgd library creates
images based on the input XBM format. When parsing
XBM format with a given bug-triggering PoC input file, if
sscanf(h,"%x",&b) in function gdImageCreateFromXbm is not
able to read a hex value from h, the b variable will not be
properly initialized and thus contain an uninitialized value,
the content of which could be controlled by the attacker.
Therefore, the use of these uninitialized variables could
be used to trigger other vulnerabilities. With SaVioR, it is
unlikely that an uninitialized variable will reuse a memory
area in which content is controlled by the attacker.

CVE-2019-9639 in PHP-7.3.2. is also an UR vulnerability.
The vulnerability is caused by mishandling of the data_len
variable, which is not initialized on declaration. In particu-
lar, data_len may not be initialized properly in some cases
in the switch statement, including in the default case. The
intra-procedural analysis of SaVioR can detect this variable
and will consider it to be vulnerable to UR. Hence, SaVioR
applies SFR to the stack frame that contains data_len and
introduces the unpredictability into the stack frame reuse.

CVE-2018-1000140 in librelp 1.2.14 is non-contiguous
stack-based buffer overflow vulnerability. We just analyzed
the vulnerability manually to demonstrate SaVioR’s defense
against non-contiguous spatial attacks. The vulnerability
is caused by misusing snprintf, which returns the size
of a written value regardless of whether the write attempt is
successful or not. Function snprintf continues to process the
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crafted input in a loop and under the mistaken assumption
that the amount of data written to the buffer is the same
as the returned value. This allows an attacker to trigger a
non-contiguous buffer overflow and gives him or her the
arbitrary write primitive. However, without knowledge of
the exact location of 1) the attackable buffer and 2) the
target variable, the attacker cannot fully abuse this arbitrary
write primitive for successful exploitation. The only plau-
sible way to bypass SaVioR and exploit the vulnerability
is by combining this vulnerability with a powerful infor-
mation leakage attack. Besides, SaVioR creates a leakage
and reverse-engineering resilient stack layout by introduc-
ing a randomized absolute/relative distance between stack-
resident objects. For example, it is difficult for an attacker to
accurately distinguish whether a leaked address is a valid
object’s address or an invalid one (a garbage value), which
prevents the attacker from fully exploiting the information
leakage vulnerabilities.

7 DISCUSSION & LIMITATIONS

7.1 Extended virtual address space

Intel recently proposed a new 5-level paging mode (LA57),
which enables 56-bit user virtual address space. Some other
architectures support more than 48-bit virtual addresses
as well. For instance, recent SPARC processors support
at least 52-bit virtual addresses. In addition, 64-bit ARM
architecture supports 52-bit user virtual address space with
the ARMv8.2-LVA extension. Thanks to the extended virtual
address space, our SaVioR design is reasonably compatible
with those architectures, and hence is not limited to x86_64.

7.2 Entropy of ASLR

To show the SaVioR’s compatibility across modern operat-
ing systems, we present the entropy of ASLR implemen-
tation on OpenBSD, HardenedBSD, and Windows (x86_-
64). We manually analyzed the ASLR implementation on
OpenBSD and HardenedBSD. For Windows, we refer to
Microsoft’s article [41], [42]. Note that ASLR is commonly
performed at page-level granularity. Thus, we ignored the
randomization entropy below the 4 KB page size. Recall that
Linux offers entropies of 28, 13, 28, and 22 bits for the ELF,
brk (malloc), mmap, and stack segments.

OpenBSD and HardenedBSD. OpenBSD offers en-
tropies of 32, 20, and 6 bits for the ELF, mmap/mal-
loc, and stack segments, providing a lower entropy than
Linux. Thus, SaVioR is allowed more randomization en-
tropy with OpenBSD. In contrast, HardenedBSD has ag-
gressively adopted the latest security features [43] that offer
ASLR entropies of 30, 30, and 33 bits for the ELF, mmap/-
malloc, and stack segments. In this case, to be compatible
with ASLR in HardenedBSD, SaVioR must reserve a 46-bit
virtual address space and thus can only deploy 1024 stacks
with 5-level paging.

Windows. In default, Windows offers entropies of 17, 19,
8, and 17 bits on the ELF, DLL, heap, and stack segments,
which does not fully take advantage of the huge 64-bit
virtual address space available. To tackle this problem, High
Entropy ASLR (HEASLR) was introduced and offers en-
tropies of 17, 19, 24, and 33 bits for each respective segment.

Interestingly, except for the stack, Linux provides more
ASLR entropy than Windows with HEASLR, albeit it is
an improvement. In HEASLR-enabled applications, SaVioR
also has to reserve 46-bit virtual address space and can
deploy 1024 stacks with 5-level paging, which introduces a
reasonable degree of unpredictability into the stack layout.

7.3 Intel Control-flow Enforcement Technology
Intel Control-flow Enforcement Technology (CET) provides
two techniques to protect the integrity of forward-edge and
backward-edge control-flow: (1) a coarse-grained forward-
edge CFI policy ensuring that an indirect function call only
can transfer control flow to the function entry points (i.e.,
label-based CFI); and (2) backward-edge protection using a
hardware-enforced shadow stack. In detail, for the forward-
edge protection, Intel CET introduces a new instruction
(ENDBRANCH), which is placed into function entry points and
is used to mark valid branch targets. For the backward-edge
protection, it changes the semantics of call/ret instructions
to store and retrieve the return address into and from the
hardware-isolated shadow stack.

However, forward-edge protection is still vulnerable
to recent CFI bypass attacks [44] because of its coarse-
grained policy. To overcome this limitation, Intel CET can
be combined with SaVioR to raise the bar against function
pointer corruption attacks by randomizing the location of
function pointers on the stack. Backward-edge protection
only guarantees the integrity of the return addresses, which
does not include non-control and other control data (e.g.,
function pointers) on the stack. Further, because it changes
the semantics of the call/ret instruction, it is tailored to the
protection of return addresses. Therefore, it is not easy to
naively repurpose this technique to protect other data. This
limitation can be overcome by adopting SaVioR to protect
all the non-control and control data comprehensively.

7.4 Comparison with StackArmor
StackArmor provides comprehensive stack protection simi-
lar to SaVioR and demonstrates the practical feasibility of its
protection for legacy/COTS binaries. In detail, StackArmor
is built on top of a binary writer and thus can be directly
applied to legacy binaries. In contrast, SaVioR, which relies
on a compiler, needs to recompile the source code to apply
protection. The differences in the deployed instrumentation
tool, i.e., the binary rewriter and compiler, lead them to
have distinct strengths and weaknesses. We argue that both
approaches are complementary, and the choice of which
defense to leverage depends on the ease of recompilation
and accessibility to the source code.

When legacy binaries cannot be recompiled and rede-
ployed, StackArmor is more suitable than SaVioR in terms of
deployment. However, the implementation of StackArmor
is based on PEBIL [45], which assumes the presence of
relocation information and debugging symbols. Unfortu-
nately, given that modern compilers remove these symbols
by default, stripped binaries are quite common in real-
world cases. In that case, there is no alternative way for
StackArmor to apply its protection to the legacy binaries.

The authors of StackArmor recognized this problem
and thus proposed DynInst [46], which relaxes these as-
sumptions, as an alternative. However, DynInst’s static
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instrumentation incurs an average 35% increase in perfor-
mance overhead compared to that of PEBIL. Given that
StackArmor already yields a significant performance over-
head (28%) on SPEC CPU2006, an implementation based on
DynInst will incur an even more substantial performance
overhead, which makes it impractical.

Although StackArmor attempts to address an important
problem, SaVioR still has clear advantages over StackArmor
in terms of performance and robustness when the source
code is available. Moreover, SaVioR provides more practical
and secure protection than StackArmor. As shown in Section
6.1, SaVioR yields a lower performance overhead (10%) than
StackArmor (28%). Furthermore, SaVioR provides a leakage-
resilient way to protect security-sensitive metadata; SaVioR
guarantees that there is no reference to sensitive metadata
except for the dedicated registers (i.e., r15, xmm14, and xmm15)
and these registers are not spilled into memory.

In contrast to SaVioR, to access its security-sensitive
metadata, StackArmor relies on PEBIL’s functionality, which
allows a developer to instrument the access to Thread-
Local Storage (TLS). However, except for the main thread,
the thread control block (TCB), which points to its TLS, is
located on the thread stack. (In the case of the main thread,
its TCB is created by a dynamic loader using mmap() and
thus is also placed in the mmaped region.) Therefore, this
approach leaves a reference to security-sensitive metadata in
memory, leaving the metadata open to information leakage
attacks.

8 CONCLUSION

We presented SaVioR, which introduces unpredictability
into the stack layout and provides comprehensive protection
against stack-based spatial and temporal memory corrup-
tion attacks for C/C++ applications. To achieve this goal, it
leverages the huge 64-bit virtual address space and pointer
mirroring to efficiently randomize the location of stack-
resident objects at each function invocation. Our statistical
and empirical security evaluation verified that SaVioR ef-
fectively mitigates spatial and temporal attacks with high
probability. Performance and compatibility were evaluated
by porting SaVioR to the SPEC CPU2006 and PARSEC 3.0
benchmark suites as well as real-world applications includ-
ing the Nginx and PHP web server. The evaluation showed
that our approach is feasible and practical enough to be
adopted by various architectures and operating systems.
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