
Hacking in Darkness: Return-oriented Programming against Secure
Enclaves

Jaehyuk Lee† Jinsoo Jang† Yeongjin Jang⋆ Nohyun Kwak† Yeseul Choi† Changho Choi†

Taesoo Kim⋆ Marcus Peinado∤ Brent Byunghoon Kang†

†KAIST ⋆Georgia Institute of Technology ∤Microsoft Research

Abstract

Intel Software Guard Extensions (SGX) is a hardware-
based Trusted Execution Environment (TEE) that is
widely seen as a promising solution to traditional security
threats. While SGX promises strong protection to bug-
free software, decades of experience show that we have
to expect vulnerabilities in any non-trivial application. In
a traditional environment, such vulnerabilities often allow
attackers to take complete control of vulnerable systems.
Efforts to evaluate the security of SGX have focused on
side-channels. So far, neither a practical attack against
a vulnerability in enclave code nor a proof-of-concept
attack scenario has been demonstrated. Thus, a funda-
mental question remains: What are the consequences and
dangers of having a memory corruption vulnerability in
enclave code?

To answer this question, we comprehensively analyze
exploitation techniques against vulnerabilities inside en-
claves. We demonstrate a practical exploitation technique,
called Dark-ROP, which can completely disarm the se-
curity guarantees of SGX. Dark-ROP exploits a memory
corruption vulnerability in the enclave software through
return-oriented programming (ROP). However Dark-ROP
differs significantly from traditional ROP attacks because
the target code runs under solid hardware protection. We
overcome the problem of exploiting SGX-specific prop-
erties and obstacles by formulating a novel ROP attack
scheme against SGX under practical assumptions. Specif-
ically, we build several oracles that inform the attacker
about the status of enclave execution. This enables him
to launch the ROP attack while both code and data are
hidden. In addition, we exfiltrate the enclave’s code and
data into a shadow application to fully control the exe-
cution environment. This shadow application emulates
the enclave under the complete control of the attacker,
using the enclave (through ROP calls) only to perform
SGX operations such as reading the enclave’s SGX crypto
keys.

The consequences of Dark-ROP are alarming; the at-
tacker can completely breach the enclave’s memory pro-
tections and trick the SGX hardware into disclosing the
enclave’s encryption keys and producing measurement
reports that defeat remote attestation. This result strongly
suggests that SGX research should focus more on tradi-
tional security mitigations rather than on making enclave
development more convenient by expanding the trusted
computing base and the attack surface (e.g., Graphene,
Haven).

1 Introduction

Computer systems have become very complex. Even
simple, security-sensitive applications typically inherit the
huge trusted computing base (TCB) of the platforms they
run on. Trusted execution environments such as ARM
TrustZone [2] or Intel TXT [14] were invented to allow
small programs to run in isolation from the much larger
underlying platform software. However, the adoption of
these systems has been limited, as they were either closed
or required trusted hypervisors or operating systems that
have not materialized in the mass market.

Intel Software Guard Extensions (SGX) [16] is a new
processor feature that isolates security-critical applica-
tions from system software such as hypervisors, operating
systems, or the BIOS. SGX has been integrated into re-
cent Intel processor models and is seeing mass-market
deployment. It is widely seen as the technology that
can finally enable applications with a small TCB in the
mass market. A number of systems have been using
SGX to protect applications from threats ranging from
untrusted cloud providers to compromised operating sys-
tems [3, 6, 17, 27, 30, 36, 39].

Recent work has explored the practical limitations of
this vision. Several authors [26, 33, 38] have identified
side channels that can leak large amounts of sensitive
information out of the application’s isolated execution

environment (enclave). A synchronization bug has been
shown to lead to a breakdown in enclave security [37].
However, a fundamental question about the security of
SGX remains unanswered: What is the effect of having a
memory-corruption vulnerability in an enclave and how
dangerous is it?

This question is important, as such vulnerabilities have
been found in a wide range of applications, including
security applications [4, 12, 13]. Furthermore, a major
branch of SGX-based system design runs unmodified
legacy applications and their complex operating system
support inside enclaves [6, 36]. The enclave software
of such systems is bound to have memory corruption
vulnerabilities.

In a regular environment, such vulnerabilities often re-
sult in an attack that changes the control flow of a victim
program to execute arbitrary code. However, enclaves
in SGX differ from such environments in several impor-
tant ways. In particular, SGX protects the entire memory
contents of the enclave program. Memory values and
registers that are required to launch an attack are com-
pletely hidden from attackers. More important, recent
SGX-based systems even keep the enclave code secret
from attackers. For example, under VC3 [30], the pro-
gram binaries are encrypted. This poses a problem for
ROP attacks [8, 9, 32], as the attacker needs to find a
vulnerability and gadgets in the victim’s code.

In this paper, we comprehensively analyze the af-
termath of exploiting a vulnerability in enclave code
by demonstrating a practical attack, called Dark-ROP.
Dark-ROP can completely disarm the security guarantees
of SGX. In essence, Dark-ROP exploits a control-flow
hijacking vulnerability in the enclave software through
return-oriented programming (ROP). Since SGX prevents
all access to enclave code and data from outside the en-
clave, we cannot directly apply typical ROP attacks.

To overcome these challenges, we construct a novel
method for finding a vulnerability and useful ROP gad-
gets in fully encrypted binaries (unknown code) running
under SGX. The method constructs three oracles that (a)
detect the number of register pops before a ret instruc-
tion, (b) reveal enclave register values, and (c) leak the
secret enclave memory contents. The method requires
no knowledge of the content of the binary running in the
enclave. Dark-ROP can chain the gadgets found in this
way and utilize them to invoke security-critical functions
such as data sealing and generating measurement reports
for remote attestation.

In addition, we construct a shadow application (i.e.,
SGX Malware) that runs outside an enclave but fully em-
ulates the environment of an SGX enclave. This demon-
strates the ability of Dark-ROP to fully control the en-
clave program. Dark-ROP utilizes ROP chains to copy

the complete enclave state, including both code and data
to unprotected memory. In addition to breaching enclave
confidentiality, this also enables Dark-ROP to emulate the
enclave software. It can run the enclave’s code outside the
enclave, except for a small number of SGX instructions.
The latter are used for attestation and for obtaining the
enclave’s crypto keys. Dark-ROP emulates these instruc-
tions by invoking ROP calls into the victim enclave.

The shadow application runs in unprotected memory
under the control of the attacker. When a remote server
requests a measurement report to check the integrity of
the victim enclave, the shadow application first receives
the request (as a man-in-the-middle), and then invokes an
ROP call that generates the correct measurement report in
the victim enclave and sends a reply to the remote party
to complete the attestation protocol. This man-in-the-
middle construction allows attackers to have complete
flexibility in executing any code of their choice in the
shadow application because it is not protected by SGX at
all. At the same time, the remote party cannot detect the
attack through the remote attestation because the shadow
application can use the real enclave to generate the correct
measurement report.

We summarize the contributions of the Dark-ROP at-
tack as follows:

1. First ROP demonstration against an SGX pro-
gram on real hardware. The Dark-ROP attack can
completely disarm the security guarantees of SGX.
This includes 1) exfiltrating secret code and data
from enclave memory, 2) bypassing local and re-
mote attestation, and 3) decrypting and generating
the correctly sealed data.

2. New ROP techniques. We devise a new way to
launch a code-reuse attack by 1) blindly finding a
vulnerability and useful gadgets from an encrypted
program in the enclave and 2) constructing a shadow
enclave that poses as a man-in-the-middle to mas-
querade the entire application of the enclave.

3. Informing the community. There is a tempta-
tion to focus on convenience (e.g., running unmod-
ified programs on SGX via library OSes [3, 6, 36])
rather than security (e.g., verification of enclave pro-
grams [34, 35]).
While SGX-like execution environments may make
exploitation more difficult, software vulnerabilities
continue to be a real threat. Thus, there is a need for
well-studied security mechanisms that are tailored
to the SGX environment.

We organize the rest of the paper as follows. §2 pro-
vides background on SGX. §3 discusses the challenges
and the threat model of Dark-ROP. §4 illustrates the de-
sign of Dark-ROP. §5 describes various ways to further

develop this attack for malicious uses. In §7, we discuss
the feasibility and effectiveness of our attack. §8 covers
related work. We conclude in §9.

2 Background

In this section, we present the background on SGX that is
necessary to further the understanding of Dark-ROP.

Intel SGX. Intel Software Guard Extensions (SGX) is
an extension of the x86 instruction set architecture (ISA),
which enables the creation of trusted execution environ-
ments (TEE), called enclaves. An enclave has an isolated
memory space and execution runtime. SGX protects pro-
grams running in enclaves from attacks that undermine
the integrity and the confidentiality of code and data of
the program. For example, SGX prevents enclaves from
being tampered with by privileged software (e.g., kernel),
and from many physical attacks such as the cold-boot
attacks.

2.1 Security Features of SGX

Memory encryption/isolation in SGX. SGX provides
hardware-based access control mechanism and memory
encryption to strongly guarantee the confidentiality and
integrity of the entire memory used by an enclave program
(Enclave Page Cache (EPC)).

The SGX processor enforces an access control policy
that restricts all access to an enclave’s memory to code
running inside that enclave. That is, no other software,
including the operating system, can read or write enclave
memory. This access restriction is enforced by the Mem-
ory Management Unit (MMU) integrated in the processor
package, which cannot be manipulated by the system soft-
ware. Specifically, page miss handler (PMH) [23] checks
an access permission of the EPC pages when any software
requests read or write access to the enclave memory.

In addition, a memory encryption engine (MEE) [11,
15] that is a extension of the memory controller encrypts
enclave code and data before they are being written to
main memory. This reduces the hardware TCB of SGX
to the processor package and prevents a variety of attacks
such as cold boot or DMA attacks.

Ensuring program integrity through attestation. At-
testation is a secure assertion mechanism that confirms
the correct application has been properly instantiated on
a specific platform [1].

The purpose of attestation in SGX is twofold: ensur-
ing that an enclave is running an expected program on a
certified SGX platform with a correct configuration and
securely sharing a secret to build a secure communication
channel between an enclave and a remote entity (e.g., the

owner of the enclave).
A complete end-to-end SGX attestation involves a long

series of steps, most of which are not relevant for this
paper. The one step that is relevant to Dark-ROP is that
an enclave needs to obtain a cryptographic message au-
thentication code (MAC) from the processor as part of the
attestation. The enclave calls the EREPORT instruction
to obtain the MAC. EREPORT computes the MAC over
a data structure that includes the calling enclave’s crypto-
graphic identity (digest) with a processor key that is not
revealed to the caller.

Data sealing. SGX provides the means for securely
exporting sensitive data from an enclave by encryption
(i.e. data sealing).

The processor provides each enclave with crypto keys
that are unique to the enclave’s cryptographic identity
(digest). That is, different enclaves will receive different
keys. Enclave code can use these keys to implement data
sealing: It can cryptographically protect (e.g., encrypt,
MAC) data before asking untrusted code to store them
persistently. At a later time, a different instance of the
same enclave (with the same enclave digest) can obtain
the same key from the processor and decrypt the data.
Enclaves can use the EGETKEY SGX leaf function to
access their keys.

Deploying an encrypted binary in SGX. Several re-
searchers have pointed out and built systems [5, 6, 24,
29, 30] that can deploy a completely encrypted program
to the SGX platform. This can increase program secu-
rity by preventing attackers from reverse engineering the
program.

In short, the enclave owner builds the enclave with a
simple plaintext loader binary. The loader will copy a sec-
ond, encrypted binary into enclave memory and decrypt
it inside the enclave with a key that it can obtain from the
enclave owner using remote attestation. The loader then
invokes the second binary. Optionally, the loader code
can be erased from enclave memory to deprive attackers
of known gadget building material.

This process requires memory that is at some time
writable and at another time executable. Current SGX
specification (SGX1 [19]) does not allow changing mem-
ory page permissions after an enclave has been created.
Thus, the pages into which the second binary is loaded
have to be made writable and executable. A new SGX
specification (SGX2 [20]), promises to support the mod-
ification of page permissions of running enclaves. That
would allow the deployment of encrypted binaries without
requiring pages to be both executable and writable.

In summary, SGX makes it possible to deploy en-
crypted binaries, which means that attackers may never
be able to see the code running inside the enclave they are

ENCLU

0x0

0x1

0x6

0x4

…

…

EREPORT

EGETKEY

EEXIT

EMODPE

Create a cryptographic report

Retrieve a cryptographic key

Synchronously exit an enclave

Extend an EPC access permission

Instruction RAX value Leaf function Description

Figure 1: ENCLU instruction and its leaf functions. To invoke
a leaf function of interest through the ENCLU instruction, an
application developer can load the index of the function into the
rax register and then execute ENCLU. For example, the value of
rax is required to be 0x4 to invoke EEXIT.

trying to attack.

2.2 Instruction Specifications

SGX adds two new instructions, ENCLU and ENCLS, to the
x86 ISA [19, 20]. ENCLU handles the user-level operations
(i.e., Ring 3) such as deriving encryption keys and gen-
erating measurement reports. ENCLS, on the other hand,
handles privileged level operations (i.e., Ring 0) such
as creating enclaves, allocating memory pages. While
SGX introduces many operations for creating enclaves
and managing them, these two instructions work as gates
that help dispatch a variety of functions, which are called
leaf functions [19, 20].

Leaf functions. Figure 1 shows how a user-level process
can invoke each leaf function through an ENCLU gate. To
call a leaf function, a developer can load the index of
a leaf function into the rax register and call ENCLU. For
example, setting rax to 0x0 will call EREPORT, 0x1 will
call EGETKEY, etc. Each leaf function requires different pa-
rameters, which are passed through the rbx, rcx, and rdx
registers. For example, EEXIT, one of the leaf functions
of ENCLU, requires two parameters: 1) a target address
outside the enclave and 2) the address of the current Asyn-
chronous Exit Pointer (AEP). These two parameters are
passed through the rbx and rcx registers. After setting the
required parameters, the developer can now set rax to the
index of the leaf function (in this case, 0x4). Finally, ex-
ecuting the ENCLU instruction will execute the EEXIT leaf
function. This calling convention for leaf functions is very
similar to invoking a system call in Linux or Windows on
the x86 architecture.

3 Overview

In this section, we present an overview of Dark-ROP
with a simple enclave program that has a buffer overflow
vulnerability as an example.

1 // EENTER can run this function
2 Data* import_data_to_enclave(char *out_of_enclave_memory)
3 {
4 // data to be returned
5 Data *data = new Data();
6 // a stack buffer in the enclave
7 char in_enclave_buffer[0x100];
8

9 // possible buffer overflow
10 strcpy(in_enclave_buffer, out_of_enclave_memory);
11

12 // ...
13 // do some processing
14 // ...
15 return data;
16 }

Figure 2: An example enclave program that has a buffer over-
flow vulnerability. The untrusted program can call an exported
function import_data_to_enclave() in the enclave through the
EENTER leaf function. The function will copy data from memory
outside the enclave to an in-enclave stack buffer. However, the
buffer can overflow during the copy because the size of data to
be copied is not checked.

3.1 Launching the ROP attack in SGX

Figure 2 shows an example of a potentially ex-
ploitable vulnerability. In particular, the function
import_data_to_enclave() reads the data from outside
the enclave and creates a class object (i.e., Data in the
code) by parsing the raw data. An untrusted program can
invoke a function in the enclave (from outside the enclave)
if an enclave program has exported the function. To call
the function in the enclave, the untrusted program can set
the rbx register as the address of the Thread Control Struc-
ture (TCS), which is a data structure that contains the entry
point of the enclave (e.g., the import_data_to_enclave()
function in this case) and its argument (i.e., the attack
buffer as out_of_enclave_memory) as a pointer of the un-
trusted memory. Then, running EENTER will invoke the
function in the enclave. In the function, the data at the
untrusted memory will be copied (see line 10) using the
strcpy() function, which does not check the size of the
data to be copied so that the attacker can exploit this buffer
overflow vulnerability. While the vulnerability does not
have to be in this form specifically, the code is very simple
to represent a general example of an enclave program that
has an exploitable vulnerability.

To launch the ROP attack on the vulnerability, the at-
tacker can fill the attack buffer to more than the size of
the buffer in the enclave, which is 0x100, to overwrite the
return address and then build the stack with ROP gadgets
and function arguments to control the program execution
at the attacker’s will.

However, the ROP attack against enclaves will not
simply work in the typical way because the information
for the execution environment as well as the program
itself is encrypted, so it is hidden to attackers.

Challenge: encrypted binary makes the ROP attack
difficult. In the example, since we know the source
code of the program, we can easily find the location and
the triggering condition of the vulnerability. However,
in the most secure configuration of the SGX platform
(deploying an encrypted binary as in §2.1), the assumption
that we know the location of the vulnerability and the
condition that triggers vulnerability does not hold. This
makes the launching of an ROP attack harder even if
there is a buffer overflow vulnerability because attackers
are required to find the vulnerability while having no
knowledge of the target program.

Additionally, finding gadgets over the encrypted pro-
gram is another challenge that is orthogonal to finding
vulnerabilities. Suppose that an attacker could find the
location and the condition for triggering a vulnerability.
To successfully exploit the vulnerability and take control
of the program, the attacker is required to launch a code
reuse attack (if there is no code injection vulnerability)
through return-oriented programming (ROP).

Unfortunately, chaining the ROP gadgets to execute
an arbitrary function is exceptionally difficult in enclaves
because the program binary is encrypted. Deploying a
program binary in a fully encrypted form in SGX results
in the code in the binary being completely unknown to the
attacker. In other words, the attacker has to find gadgets
for their execution and chain them together under the
blindness condition.

Although a recent work on Blind ROP [7] demonstrates
an ROP attack against unknown code, the attack relies
critically on properties of certain server applications that
are based on the fork() system call, which does not hold
for SGX enclaves.

3.2 The Dark-ROP Attack

Consequently, to launch a successful ROP attack against
the enclaves in SGX, the attacker must overcome the
aforementioned challenges. In Dark-ROP attack, we re-
solve the challenges as follows.

Finding a buffer overflow vulnerability. To find a
buffer overflow vulnerability in an encrypted enclave pro-
gram, the Dark-ROP attack exploits the exception han-
dling mechanism of SGX as follows.

For an enclave program, it has a fixed number of (ex-
ported) entry points (i.e., functions of enclave program)
specified in the enclave configuration. Because these are
the only point at which an untrusted OS can supply an in-
put to the enclave program, we enumerate those functions
and apply fuzzing to its argument to find any memory
corruption vulnerability. In fuzzing functions, we can de-
tect a vulnerability by exploiting the exception handling
mechanism of the enclave. Since an enclave program

runs as a user-level program, which cannot handle pro-
cessor exceptions, when it encounters memory corruption
(i.e., page fault) on its execution, the enclave gives back
the execution to the untrusted operating system to handle
the fault. This fall-back routine for handling the excep-
tion is called Asynchronous Enclave Exit (AEX). If we
detect any AEX caused by a page fault on fuzzing, this
means that there was a memory corruption so that we set
the function and the argument that currently fuzzed as a
candidate for the buffer overflow vulnerability.

Next, to detect vulnerability triggering conditions such
as the size of the buffer and the location of the return
address, we exploit the value of the CR2 register at the
AEX handler, the register that stores the source address
of a page fault. By constructing the fuzzing buffer to
contain an invalid memory address (e.g. 0x41414000) in
the buffer, we can determine the potential target of the
return address if the exception arose from the supplied
value (i.e., if the value of CR2 is 0x41414000).

Finding gadgets in darkness. After finding a
buffer overflow vulnerability in an enclave program, the
Dark-ROP attack finds gadgets to exploit the vulnerabil-
ity. To overcome the challenge of finding gadgets against
the unknown binary, we make the following assumptions
on the code in the binary.

First, the code must have the ENCLU instruction. This
is always true for the binaries in enclaves because the
enclave program can call the leaf functions only with the
ENCLU instruction. Without having the instruction, the
enclave cannot enjoy the features provided by SGX.

Second, the code should have the ROP gadgets that
consist of one or multiple “pop a register” (i.e., pop rbx)
instructions before the return instruction, especially for
the rax, rbx, rcx, rdx, rdi, and rsi registers. The reason
we require pop gadgets for such registers is that these
registers are used for the index of the leaf function (rax),
for arguments passing (the other registers) for the leaf
function, and a library function in the x86-64 architecture.
For the rbx, rcx, and rdx registers, the ENCLU instruction
uses them for passing the arguments. Similarly, for the
rdi and rsi registers, the library functions use them for
passing the arguments. To successfully call the leaf func-
tions and library functions, the value of these registers
must be under the control of the attacker.

The second assumption is also a very common case for
the enclave binary because these registers are callee-saved
registers. As mentioned above, the leaf functions and the
library functions use them for passing the argument so
that the callee must have a routine that restores the regis-
ters, and this is typically done by running multiple “pop
a register” instructions before the return of the function.
Thus, the code typically includes the “pop a register” gad-
get for these registers. Furthermore, since rax is reserved

for passing the return value of the function in the x86-64
architecture, having an instruction such as mov rax, rbx
before the function epilogue is a very common case.

Third, we assume that the program in the enclave has a
function that operates as a memcpy function (e.g., memcpy,
memmove, or strncpy, etc.). The assumption still targets a
typical condition because the isolated architecture of SGX
memory requires frequent copying of memory between
the trusted in-enclave area and the untrusted area.

We believe the assumptions we made for the gadgets
targets a typical condition of enclave programs because
without such gadgets, the programs will be broken or run
unconventionally.

Based on the assumption of gadgets, we attempt to find
the useful ROP gadgets without having any knowledge
of the code in the binary, so we called this attack “Dark-”
ROP. To this end, we construct three oracles that give
the attackers a hint of the binary code to find the useful
gadgets: 1) a page-fault-based oracle to find a gadget that
can set the general purpose register values; 2) the EEXIT
oracle can verify which registers are overwritten by the
gadgets found by 1); and 3) the memory oracle that can
find the gadget has a memory copy functionality to inject
data from untrusted space to the enclave or to exfiltrate
the data vice versa. For the details of the oracles, please
refer to §4 for the further descriptions.

By utilizing these three oracles, the Dark-ROP attack
achieves the ability to execute security-critical functions
such as key derivation for data sealing and generating the
correct measurement report for attestation, and arbitrarily
read or write data between the untrusted memory and the
memory of the enclaves.

3.3 Threat Model

To reflect the environment of SGX deployed in the real
world, the Dark-ROP attack is based on the following
assumptions:

1. The target system is equipped with the processor that
supports SGX, and we assume that the hardware is
not vulnerable. Additionally, we also exclude the
case that requires physical access to the machine be-
cause the Dark-ROP attack is a pure software-based
attack.

2. SGX and the enclave application are configured cor-
rectly. That is, we assume that all software settings
that affect the enclave such as BIOS settings and the
setting of page permissions for the enclave etc. are
configured correctly, as described in the Intel man-
ual [19–22] to guarantee the security promised by
SGX if the application has no vulnerability.

3. The application harvests the entire security benefit

of SGX. That is, the application that runs in the
enclave is distributed in an encrypted format and
removing the loader program after launching the
payload, which makes it completely hidden to the
attacker, and the application uses data sealing for pro-
tecting application data as well as remote attestation
to verify the running status of the enclave.

4. However, the application that runs inside the enclave
has an exploitable memory-corruption vulnerability.

5. The attacker has full control of all software of the
system, including the operating system and the un-
trusted application that interacts with the enclave,
etc., except the software that runs inside the enclave.

6. The target application is built with a standard com-
piler (e.g. Visual Studio for SGX, or gcc), with the
standard SDK that is supplied by Intel.

The threat model of Dark-ROP is pragmatic because it
assumes the standard, and secure configuration of SGX
for the attack target, as well as assuming only the software-
level attacker. The extra assumption that we add to the
standard is that the software in the enclave has an ex-
ploitable vulnerability. Since removing all vulnerabilities
from the software is an inextricable challenge, we believe
that the assumptions depict the common best practices of
using of SGX.

4 Attack Design

In this section, we illustrate how an attacker can launch
the ROP attack by overcoming the challenges of the at-
tack in the SGX environment. We first describe how an
attacker can find the gadgets required for the Dark-ROP
attack by exploiting the three oracles that can provide
the hints with respect to the code in the unknown (en-
crypted) binary in the enclave. After that, we demonstrate
a proof-of-concept example that invokes security-critical
functions within the enclave through the vulnerability by
chaining the ROP gadgets.

4.1 Finding gadgets in a hidden enclave
program

To find gadgets from the completely hidden binary in
an enclave, we devised three techniques that can turn an
enclave into an oracle for finding a gadget: 1) Reading
the cr2 register at the page fault handler to find the gadget
with multiple register pops to control the value of registers.
2) Leaking the register values at the page fault handler by
calling the EEXIT leaf function to identify which registers
are changed by 1. 3) Examining the memory outside
the enclave to find a function in the memcpy() family to
perform arbitrary read/write on the enclave.

0xF7501200: pop rdx
0xF7501201: retAddress Access

Permission

A
PPL

IC
AT

IO
N

0x400000
- 0x408000 r-x

0x607000
- 0x608000 r--

……

E
N

C
L

AV
E

0xF7500000
- 0xF752b000

(Code)
r-x

……

0xF7741000
-

0xF7841000
rw-

0xF7842000
-

0xF7882000
rw-

0xF7883000
-

0xF7884000
rw-

……

Buf[100] Ret_addr
(0xF7501200)

PF_Region_0
(0xF7741000)

PF_Region_1
(0xF7742000)

PF_Region_2
(0xF7743000)

PF_Region_3
(0xF7744000) ……

Memory map

Enclave Stack

AEX_handler in page fault handler

Candidate gadget in enclave code section

①Return to candidate gadget

④

uint64_t PF_R[10] = {0xF7741000, 0xF7742000,
0xF7743000, 0xF7744000, ……}

AEX_handler(unsigned long CR2, pt_regs *regs)
{

// Indicate exception within enclave
if(regs → ax == 0x03) {

if (CR2 == 0)
gadget = CRASH;

else {
int count = 0;
foreach (uint64_t fault_addr in PF_R) {

// verify number of pops
if (fault_addr == CR2) {

number_of_pops = count;
break;

}
count++;

}
……

②

Return to non-executable area
(PF_Region_1)
③

AEX
(page fault)

Load PF_Region_1
as return address

Figure 3: An overview of page fault oracle and the AEX handler.
The workflow for identifying pop gadgets by using the page
fault oracle is as follows: (1) The attacker sets an arbitrary
address in the code section on the stack to probe if the address
is for a pop gadget (e.g. 0xF7501200 in the figure) and then set
several non-executable addresses in PF_region. (2) Because the
probed address in the figure contains a single pop and a return
instruction, the processor attempts to pop the first address in
PF_region (i.e., PF_region_0) then return to the second address
on the stack, PF_region_1 (i.e., 0xF7742000). (3) Returning to
the PF_region_1 address emits the page fault exception because
the address is non-executable. (4) At the exception handler,
the attacker can locate this address from the cr2 register in the
exception context so that the attacker can identify that only one
pop is in the gadget.

Page fault oracle for changing register values. We
first find gadgets that can set a value to a specific
register from the values in the stack. For instance,
a pop gadget like pop rbx; pop rcx; pop rdx; retq;
can change the value of the rbx, rcx, and rdx registers at
once if values are set at the attack stack by exploiting a
buffer overflow vulnerability.

To find such gadgets, we turn the Asynchronous En-
clave Exit (AEX) and page fault handler into an oracle
for detecting the gadgets. An interesting property of the
Intel processor is that when a page fault exception arises,
the cr2 register stores the address of the page that gen-
erated the fault. On the other hand, if a page fault arises
in the enclave, the AEX happens and it clears the least
12 significant bits of the cr2 register and overwrites the
General Purpose Registers (GPRs) with the synthesized
value to protect its execution context. Therefore, for the
page fault that arises in the enclave, we can identify which
address triggered the page fault in a page granularity by

examining the value in the cr2 register at the page fault
handler (i.e., AEX handler in this paper).

To turn this into a gadget-finding oracle, we set the
attack stack as in Figure 3. In essence, by exploiting the
memory corruption bug, we set the return address to be
the address that we want to probe whether it is a pop
gadget or not. The probing will scan through the entire
executable address space of the enclave memory. At the
same time, we put several non-executable addresses, all
of which reside in the address space of the enclave, on the
stack.

Because the untrusted operating system manages all
the memory allocations, the attacker knows the coarse-
grained memory map of the enclave (on the left side
of the Figure 3) so that the attacker can easily identify
the non-executable enclave memory pages (e.g., enclave
stack or heap pages). We call this memory region as
PF_region and, PF_R array in the code contains the list of
non-executable page addresses.

For instance, we put 0xf7741000, 0xf7742000,
0xf7743000, and 0xf7744000, etc. on the enclave stack
to set the register values if it is a pop gadget (see at the
bottom of the Figure 3. For example, if the gadget at the
return address is pop rdx; ret;, then 0xf7741000will be
stored into the rdx register, and the processor will attempt
to return to the address of 0xf7742000. However, the ad-
dress 0xf7742000 is a non-executable address; returning
to such an address will cause the processor to generate the
page fault. Then, the AEX handler will catch this page
fault. At the AEX handler, the attacker is able to distin-
guish the number of pops in the gadget by examining the
value in the cr2 register. In the case of the example, the
value is 0xf7742000, the second value on the stack, which
means that the gadget has only one pop before the return
because the first value, 0xf7741000, is popped. Taking
another example, when the gadget has three pops, the first
three values on the stack will be removed so that the value
in the cr2 register will be 0xf7743000.

Using this method, the attacker can identify the num-
ber of pops before the return on the gadgets. How-
ever, the oracle does not allow the attacker to figure out
which registers are being popped. Moreover, the gadget
found by this method could not be a pop gadget because
the page fault can be triggered in other cases such as
pop rax; mov rbx,QWORD PTR [rax+0x4] (fault by mov
instruction). In the next oracle, we will remove the uncer-
tainty of the gadgets found by this oracle.

Identifying the gadgets and the registers on EEXIT.
The second oracle we build is for identifying pop gadgets
among the gadget candidates found from the first AEX
oracle. The second oracle exploits the fact that the values
in registers are not automatically cleared by the hardware
on the execution of the EEXIT leaf function. As a result,

Host operating system

S

Untrusted application
Trusted Enclave

EEXIT_handler(pt_regs *regs, ulong error)
{

if(error == (PF_PROT | PF_USER |
PF_INSTR) && regs → ax == 0x4)
//EEXIT happens

}

pop gadget #1 (pop; ret)

pop gadget #2 (pop; pop; ret)

pop gadget #3 (pop; pop; ret)

……

rax = 0x4
rbx = 0x4
……
r14 = 0x4
r15 = 0x4

Registers

buf[100] Gadget
#1

0x4 Gadget
#2

0x4 0x4 ENCLU?

Enclave stack

ENCLU ?

0x00000004: UNMAPPED
0x0000000c: UNMAPPED

Application address space

rax = 0x4
rbx = 0x4
……
r14 = 0x4
r15 = 0x4

Registers

②

①

③

②

Figure 4: An overview of searching an ENCLU gadget and the
behavior of EEXIT. (1) The attacker chains multiple pop gadgets
found in Figure 3, as many as possible, and put the value 0x4
as the number of pops in the gadget. (2) If the probing address
(the last return address) contains the ENCLU instruction, then it
will invoke EEXIT and jump to the address specified in rbx (i.e.,
0x4 because of the pop gadgets). (3) The execution of EEXIT
generates the page fault because the exit address in rbx (0x4)
does not belong to the valid address region. (4) At the page
fault handler, the attacker can be notified that EEXIT is invoked
accordingly by examining the error code and the value of the
rax register. The error code of EEXIT handler contains the value
that indicates the cause of page fault. In this case, the page fault
is generated by pointing an invalid address 0x4 as jump address
(i.e., the value of rbx register). So if the error code contains the
flags for PF_PROT (un-allocated), PF_USER (userspace memory),
and PF_INSTR (fault on execution), and the value of rax is 0x4
(the value for EEXIT leaf function), then the attacker can assume
the probed address is where the ENCLU instruction is located.

the attacker can identify the values of the registers that
were changed by the pop gadget that is executed prior to
EEXIT. This helps the attacker to identify the pop gadgets
among the candidates and the registers that are popped by
the gadgets.

To build this oracle, we need to find the ENCLU instruc-
tion first because the EEXIT leaf function can only be in-
voked by the instruction by supplying the index at the rax
register as 0x4. Then, at the EEXIT handler, we identify
the pop gadgets and the registers popped by the gadget.
To find the ENCLU instruction, we take the following strat-
egy. First, for all of the pop gadget candidates, we set
them as return addresses of a ROP chain. Second, we put
0x4, the index of the EEXIT leaf function, as the value to
be popped on that gadgets. For example, if the gadget has
three pops, we put the same number (three) 0x4 on the
stack right after the gadget address. Finally, we put the

Host operating system

#define BASE ((void*)0x80000000)
uint64_t zero = 0;

mmap(BASE, 0x1000, 7, MAP_ANONYMOUS |
MAP_FIXED | MAP_PRIVATE , -1, 0);

ROP_to_enclave (source_addr, dest_addr, length);

if (memcmp(BASE, &zero, 0x8) != 0) { //If memory content is changed
printf (“memcpy found\n”);

}

Untrusted application
Trusted Enclave

0xF7511000: pop rdi; ret
0xF7511003: pop rsi; ret

0xF7515158: pop rdx; ret

Buf
[100]

0xF7511000 0x80000000
(destination)

0xF7500000
(source)

0xF7515158 0x08
(len)

0xF7510000
(memcpy ?)

Enclave stack

Application code

①

0xF7510000: memcpy ?

0x80000000 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x80000018 00

Application address space

0xF7500000: 7f 45 4c 46 02 01 01 00
0xF7500008: 00 00 00 00 00 00 00 00
0xF7500010: 03 00 3e 00 01 00 00 00
0xF7500018: d0 ad 00 00 00 00 00 00

Enclave address space

④

②
③

④

Figure 5: An overview of finding memcpy() gadget. (1) The
attacker exploits a memory corruption bug inside the enclave
and overwrites the stack with a gadget chain. (2) The gadgets in
the chain sets the arguments (rdi, rsi, rdx) as the destination
address (0x80000000) in rdi, the source address (0x75000000)
in rsi, and the size (0x8) in rdx to discover the memcpy() gadget.
(3) On the probing, if the final return address points to the
memcpy() gadget, then it will copy the 8 bytes of enclave code
(0xf7500000) to the pre-allocated address in application memory
(0x80000000), which was initialized with all zero. (4) To check
if the memcpy() gadget is found, the attacker (application code)
compares the contents of the memory region (0x80000000) with
zero after each probing. Any non-zero values in the compared
area results the discovery of the memcpy().

address to scan at the end to probe whether the address is
a ENCLU gadget.

The mechanism behind the scene is like the following.
The value 0x4 is the index for the leaf function EEXIT.
What we aim to change the value for is the rax register
because it is the selector of the EEXIT leaf function. For
the combinations of pop gadget candidates and the address
of probing, the enclave will trigger EEXIT if the address of
a gadget that changes rax and the address of ENCLU sits on
the stack. The attacker can catch this by using an SIGSEGV
handler because the return address of EEXIT (stored in the
rbx register) was not correct so that it will generate the
exception. If the handler is invoked and the value of rax
is 0x4, then the return address placed at the end of the
attack stack points to the ENCLU instruction.

After we find the method to invoke EEXIT, we exploit
the EEXIT gadget to identify which registers are popped by
the pop gadget. This is possible because, unlike AEX, the
processor will not automatically clear the register values
on running the EEXIT leaf function. Thus, if we put a pop
gadget, and put some distinguishable values as its items to

be popped, for instance, 0x1, 0x2, and 0x3, and then run
the EEXIT at the end, we can identify the popped registers
by the values.

For example, if the pop gadget is pop rdi; pop rsi;
pop rdx; ret, then at the handler, we can see the value
of 0x1 at rdi, value of 0x2 at rsi, value of 0x3 at rdx.
Accordingly, we can determine that the gadget pops the
rdi, rsi, and rdx registers.

By using this oracle, we probe all candidates of pop
gadgets until we can control all six registers that are re-
quired to launch the Dark-ROP attack.

Untrusted memory as a read/write gadget oracle.
The last oracle we build is the memory-based one to find
a function that can copy data between the enclave and the
untrusted memory.

To find such a function, we build an ROP chain that
copies data from the memory in the enclave to the un-
trusted area only if the probed address (set as a return
address) is matched with the starting of the memcpy()
function. In particular, we set the stack to have an ad-
dress at the untrusted area for the first argument (i.e., the
destination of memcpy()), an address in the enclave for
the second argument (i.e., the source of memcpy()), and
the size of data to be copied for the third argument in
order to probe the return address as one of the functions
in the memcpy() family. Then, we set the value of the
destination address (at the untrusted area) with all zero
bytes. After this, we probe each address of the enclave
to find the memcpy() function. The probing finishes when
we detect any change in the untrusted memory because
the change proves that the memory copy is executed.

The memcpy() ROP gadget allows attackers to have
an arbitrary read/write in both directions in between the
enclave and the untrusted memory space because the at-
tacker can set the source and destination addresses arbi-
trarily at the attack stack.

4.2 A proof-of-concept Dark-ROP attack

After finding all gadgets, including the register pop gadget,
ENCLU, and memcpy(), an attacker can control the enclave
in two ways. First, the attacker can run any leaf function
through ENCLU by setting arbitrary values in the registers
that are used for setting parameters. Second, the attacker
can copy-in and copy-out the data from the untrusted
memory to the trusted in-enclave memory by using the
memcpy() gadget. In the Dark-ROP attack, we chain those
two capabilities together to run the security-critical op-
erations in SGX and then extract generated (secret) data
from the enclave to the untrusted space solely based on
launching the ROP attack. In particular, for the proof-
of-concept demonstration, we execute EGETKEY, a leaf
function for encryption key derivation, and extract the

generated key from the enclave Note that EGETKEY must
be executed in the enclave because the return value, which
is an encryption key, is unique to the enclave and tied to
the hardware.

Leaking the encryption key for data sealing. The
EGETKEY leaf function handles the generation of the en-
cryption key used for data sealing and verifying the
REPORT in attestation. The requirement for calling the
EGETKEY function is that, first, the value of rax regis-
ter, which is the selector of ENCLU, should be set as 0x1.
Second, the rbx register should point to the address of
KEYREQUEST, which is a metadata that contains configura-
tions for key generation, and the address must be aligned
in 128 bytes. Third, the rcx register should point to a
writable address in the enclave because the processor will
store the generated key into that address.

To call EGETKEY through ROP gadgets correctly, we do
use the following steps. We first construct a KEYREQUEST
metadata object in the untrusted space and place a
memcpy() gadget to the attack stack to copy this object
to an 128-byte aligned in-enclave address that is both
writable and readable. Finding such memory area in the
enclave is not difficult. In the SGX security model, the
attacker already knows the region of the memory that is
used by the enclave because all the memory allocation is
handled by the untrusted operating system. Even though
the page permission in the page table entry could not be
matched with the permission on EPCM, the attacker can
scan the entire address space to find the in-enclave address
that can be used for a buffer. Second, we place multiple
pop gadgets to change the value of the registers. We set
rbx to be the in-enclave destination address and rcx to be
both a readable and writable region in the enclave. At the
same time, we set the rax register to 0x1, the index of the
EGETKEY leaf function. Third, we place the ENCLU gadget
to execute the EGETKEY leaf function. Finally, we put the
memcpy() gadget again by chaining the pop gadgets to set
rdi to a writable untrusted memory address and rsi to
the address of the generated key in the enclave, which is
the value of rcx on the second step.

The chain of gadgets will first call memcpy() to copy
the KEYREQUEST data from the untrusted space to the
in-enclave memory, execute EGETKEY with the prepared
KEYREQUEST as a parameter, and then call memcpy() again
to copy the generated key from the enclave to the un-
trusted space. At the end of the chain, the attacker can
extract the key at the untrusted memory address that is set
on rdi at the final step of memcpy() chaining. Using the
extracted key, the attacker can freely encrypt/decrypt the
data as well as generate the MAC to seal the data at the un-
trusted space because SGX uses the standard encryption
algorithm (e.g., AES-256-GCM), which can be replicated
anywhere if the same encryption key is supplied.

5 The SGX Malware

In this section, we demonstrate how the Dark-ROP attack
can be applied in the real world to completely disarm the
security guarantees of SGX.

From the proof-of-concept attack, the attacker can ob-
tain the ability to call any leaf functions of SGX within
the enclave to extract the secret data and inject data into
the (trusted) enclave space. In addition to calling leaf
functions to invoke the security-critical functions of SGX,
we present techniques to implement the SGX malware,
which can perform the man-in-the-middle (MiTM) attack
to mimic the real enclave program for running security-
critical operations within the enclave and to freely run
attackers’ code outside the enclave without any restric-
tions.

To achieve full control of the enclave, we construct the
SGX malware as follows: 1) By using the memcpy() gad-
get, the attacker can extract any secret data in the enclave,
including the program binary and data. Additionally, the
attacker runs the extracted program binary outside the
enclave to replicate the enclave execution. Moreover, the
attacker can inject any arbitrary code to this extracted
binary because it runs outside the enclave, which is fully
controllable by the attacker. 2) The attacker is able to
launch the security-critical operations of SGX that must
be run in the enclave at any time. This can be done by
launching the Dark-ROP attack to call the target leaf func-
tion with arbitrary register values. 3) The remote party
must not know that the enclave is under attack, even with
the remote attestation feature provided by SGX. This can
be achieved by hijacking remote attestation by calling
the EREPORT leaf function and constructing the correct
measurement data outside the enclave.

In the following, we illustrate how we construct the
SGX malware with preserving such requirements so that
the SGX malware can run at the attacker’s discretion
while bypassing attack detection using the remote attesta-
tion.

Extracting the hidden binary/data from the enclave.
The Dark-ROP attack allows the attacker to call the
memcpy() function with arbitrary source and destination
addresses (i.e., arbitrary read/write functionality). By uti-
lizing this, the attacker can set the source address to be
the start address of the binary section of the enclave, the
destination to be untrusted memory region, and the size
to be the entire mapped space for the enclave. Then, an
execution of the memcpy() gadget will copy the hidden
content of the binary from the enclave to the untrusted
area. After obtaining the binary by dumping the area, the
attacker can analyze the dump and run it to mimic the real
enclave program. Moreover, because this binary does not
run in the protected space, the attacker can freely inject

the code to alter the program for his/her own purpose.
Using a similar method, by setting the source address

to be the address of the secret data in the enclave, the
attacker can extract them to process them outside the
enclave without being protected by SGX.

Man-in-the-Middle ROP for launching the leaf func-
tions. While running extracted binary at the untrusted
space can mimic the execution of the regular instructions,
however, the leaf functions of SGX must be run inside
the enclave. Thus, when the extracted binary requires
calling the leaf functions, the SGX malware invokes the
function by launching the Dark-ROP attack against the
real enclave.

To this end, we construct the SGX malware as a Man-
in-the-Middle (MitM) architecture. In particular, the
general mechanism for calling the leaf function in the
enclave by exploiting the ROP attack works as follows.
The SGX malware first injects required data for the target
leaf function into the enclave using the memcpy() gadget.
Next, the SGX malware loads the required parameters
of the leaf function at the general purpose registers by
using pop gadgets, and then jumps into ENCLU to call the
leaf function. Finally, the malware copies the generated
data by the leaf function from the enclave to the untrusted
memory.

After this process, the SGX malware can continue to
execute the code in the extracted binary by supplying
the (extracted) return values of the leaf function (e.g., a
derived encryption key for EGETKEY) to the current (un-
trusted) execution. This shows that the attacker has full
control over the binary because the untrusted execution
can run the regular instructions as well as the leaf func-
tions whenever they are required.

Bypassing remote attestation. The last attack target of
the SGX malware is to bypass remote attestation while
running the binary at the untrusted area. Since the attesta-
tion requires generating the report in the enclave, primar-
ily, we call the EREPORT leaf function by the Dark-ROP
attack to generate the measurement report, and we em-
ulate the entire process of the remote attestation in the
binary outside the enclave to reply the correct measure-
ment report to the remote server.

Before describing the emulation step, we present the
background on how remote attestation typically works, as
in Intel SGX SDK.

Remote attestation in Intel SGX SDK. The purpose
of remote attestation is to ensure the correct settings and
running of the enclave before conducting secret operations
such as provisioning secrets and establishing a secure
communication channel with the enclave in the remote
machine.

The Intel SGX SDK uses the protocol in Figure 6 for

Host operating system
ISV_APP

Se

ISV_ENCLAVE (trusted)

Generate_ECDH_key_pairs
(&pub, &priv)

Copy_out_public_key(&pub)

Compute_DH_key()
Generate_REPORT_DATA(&pub)
Run_EREPORT()
Copy_out_REPORT()

Secure channel established!

Quoting Enclave (QE)

Service provider

REPORT

①

②

③

REPORT

Quote

④

②

①
Launch ISV_ENCLAVE

Send_msg_1(pub)

Proc_msg_2(msg2)

Send_msg_3(quote)

Generate key pairs
(&pub_s, &priv_s)

Send_response
(pub_s, signature)

Verify_quote(quote)
Compute_DH_key()

Secure channel
established! ⑤

⑤

④

③

Figure 6: The (simplified) remote attestation protocol of SGX.

the remote attestation of the enclave and establishing
a secure communication channel between the remote
server and the enclave. First, (1) the untrusted part of the
application deployed by an Independent Software Ven-
dor (ISV, i.e., software distributor), called the untrusted
program isv_app, launches the enclave program (we
call this trusted program isv_enclave). On launching
isv_enclave, isv_app requests the generation of Elliptic-
Curve Diffie-Hellman (ECDH) public/private key pair to
the enclave. The ECDH key pair will be used for sharing
secret with the remote server. Then, the isv_enclave gen-
erates the key pair, securely stores the private key in the
enclave memory and returns the public key to isv_app.
This public key will be sent to the remote server for later
use of sharing the secret for establishing a secure commu-
nication channel.

Second, on receiving the “hello” message from
isv_enclave, (2) the remote server generates its own
ECDH key pair that the server will use.

Third, (3) the server sends a quote request to the
isv_app, to verify if the public key that the server re-
ceived is from isv_enclave. Also, the server sends back
the public key (of the remote server) to isv_enclave.
To process the request, isv_app will invoke the func-
tion named Compute_DH_Key in isv_enclave to generate
the shared secret and the measurement report (we re-
fer this as REPORT). It contains the ECDH public key
that isv_enclave uses as one of the parameters to bind
the public key with the REPORT. Inside the enclave,
isv_enclave uses the EREPORT leaf function to generate
REPORT. On calling the leaf function, isv_enclave sets
the REPORTDATA, an object that passed as an argument to
the EREPORT leaf function, to bind the generated ECDH
public key to the REPORT. After isv_enclave generates
the REPORT, the untrusted isv_app delivers this to a Quot-
ing Enclave(QE), a new enclave (trusted) for verifying

the REPORT and then signs it with Intel EPID securely. As
a result, the REPORT generated by isv_enclave contains
the information for the ECDH public key that the enclave
uses, and this information is signed by the QE.

Fourth, (4) the signed REPORT will be delivered to the
remote server. The remote server can ensure that the
isv_enclave runs correctly at the client side and then use
the ECDH public key received at step (1) if the signed
REPORT is verified correctly.

Finally, the server run Compute_DH_Key to generate the
shared secret. (5) the remote server and isv_enclave
can communicate securely because they securely shared
the secret through the ECDH key exchange (with mutual
authentication).

Controlling the REPORT generation. To defeat the re-
mote attestation, and finally defeat the secure communica-
tion channel between the remote server and isv_enclave,
in the SGX malware, we aim to generate the REPORT from
isv_enclave with an arbitrary ECDH public key. For
this, we especially focus on part (3), how isv_enclave
binds the generated ECDH public key with the REPORT on
calling the EREPORT leaf function.

The Dark-ROP attack allows the SGX malware to have
the power of invoking the EREPORT leaf function with any
parameters. Thus, we can alter the parameter to generate
the REPORT that contains the ECDH public key that we
chose, instead of the key that is generated by isv_enclave.
On generating the REPORT, we prepare a REPORTDATA at
the untrusted space using the chosen ECDH public key,
and then chain the ROP gadgets to copy the REPORTDATA
to the enclave space. Note that the EREPORT requires
its parameters to be located in the enclave space. After
copying the REPORTDATA, we call the EREPORT leaf func-
tion with copied data to generate the REPORT inside the
isv_enclave. After this, we copy the generated REPORT
from the isv_enclave to isv_app and delivers the REPORT

Launch ISV_ENCLAVE

Generate_ECDH_key_pairs
(&pub, &priv)

Send_msg_1(pub)

Proc_msg_2(msg2) {
Compute_DH_key()
Generate_REPORTDATA()
ROP_copy_parameter()
ROP_EREPORT()
Get_Quote()

}

Send_msg_3(quote)

Host operating system
SGX malware (Man-in-the-Middle)

Se

ISV_ENCLAVE (trusted)

Generate key pairs
(&pub_s, &priv_s)

Send_response
(pub_s, signature)

Verify_quote(quote)
Compute_DH_key()

The secret is shared
between

the remote server
and the attacker

Quoting Enclave (QE)

Service provider

RAX Gadget

RBX Gadget

RCX Gadget

ENCLU Gadget

RSI Gadget

RDI Gadget

RCX Gadget

memcpy
Gadget

RDX Gadget

TARGETINFO

REPORTDATA

REPORT

①

②

③

③-①

REPORT

Quote

memcpy
Gadget

④

③-②

③-③

③-④

③-⑤

Figure 7: The Man-in-the-middle (MitM) attack of the SGX malware for hijacking the remote attestation in SGX.

to the QE to sign it.
As a result, at the untrusted space, the attacker can

retrieve the REPORT that contains the ECDH parameter of
his/her own choice, and the REPORT is signed correctly.

Hijacking remote attestation. The full steps of hijack-
ing the remote attestation of an enclave are as follows (see
Figure 7).

First, (1) instead of isv_enclave, the SGX malware
generates an ECDH public/private key pair and own the
private key. (2) the SGX malware sends the generated
public key to the remote server.

Then, (3) on receiving the quote request from the server,
the SGX malware calculates the shared secret correspond-
ing to the parameters received by the remote server. Also,
the SGX malware prepares TARGETINFO and REPORTDATA
at isv_app. The TARGETINFO contains the information of
the QE that enables the QE to cryptographically verify
and sign the generated REPORT. The REPORTDATA is gener-
ated with the chosen public key as a key parameter to run
EREPORT in the isv_enclave. After that, SGX malware
launches the Dark-ROP attack (3-1, 3-2 and 3-3) to copy
prepared parameters (TARGETINFO and REPORTDATA) from
the untrusted app to the enclave and generate REPORT with
the ECDH public key that the SGX malware generated at
the first step. Moreover (3-4), the generated report will be
copied out to the SGX malware from the isv_enclave,
and the SGX malware sends the generated REPORT to the
Quoting Enclave to sign this with the correct key. Because
the REPORT is generated by the enclave correctly, the QE
will sign this and return it to the attacker.

Finally, (4) the SGX malware sends this signed REPORT
to the remote server. Now, the remote server shares the
secret; however, it is not shared with the isv_enclave,

but with the SGX malware so that the secure communica-
tion channel is hijacked by the SGX malware. Note that
the remote server cannot detect the hijacking because all
parameters and the signature are correct and verified.

6 Implementation

We implemented both the proof-of-concept attack and
the SGX malware in the real SGX hardware. For the
hardware setup, we use the Intel Core i7-6700 Skylake
processor, which supports the first and only available
specification of SGX, SGXv1. For the software, we run
the attack on Ubuntu 14.04 LTS, running Linux kernel
4.4.0. Additionally, we use the standard Intel SGX SDK
and compiler (gcc-5) to compile the code for the enclave
for both attacks.

To launch the Dark-ROP attack on the real SGX hard-
ware, we use the RemoteAttestation example binary in
the Intel SGX SDK, which is a minimal program that
only runs the remote attestation protocol, with slight mod-
ification, to inject an entry point that has a buffer overflow
vulnerability, as mentioned in Figure 2.

Because the example is a very minimal one, we be-
lieve that if the Dark-ROP attack is successful against the
RemoteAttestation example, then any other enclave pro-
grams that utilizes the remote attestation are exploitable
by Dark-ROP if the program has memory corruption
bugs.

Finding gadgets from standard SGX libraries. First,
we search for gadgets from the example binary. To show
the generality of finding gadgets, we find gadgets from the
standard SGX libraries that are essential to run enclave

Table 1: Information for the length of ROP gadget chains for
launching functions that breach the security of SGX.

Length of gadget chains (byte)
memcpy LEAF FUNCTION EGETKEY EREPORT

80 88 248 248

programs such as the library for controlling the enclave
(libsgx_trts.a), the library that handles remote attestation
protocol (libsgx_tkey_exchange.a), and the standard C
library for SGX (libsgx_tstdc.a) because these libraries
will be linked regardless of the program logic.

From the example binary, we found that four gad-
gets are enough to fulfill the gadget requirement de-
scribed in §3 to launch the Dark-ROP attack against the
RemoteAttestation example. Table 2 lists these four
gadgets found in the example binary.

Constructing ROP chains for Dark-ROP. By chain-
ing these gadgets, we construct ROP chains for calling
the memcpy() function, and the EREPORT and EGETKEY leaf
functions. To call the memcpy() function, we chained
the four gadgets as follows. To set the registers for
calling the memcpy function, we chained three gad-
gets, pop rsi; pop r15; ret and pop rdi; ret to set
the destination and source address of memory copy, and
pop rdx; pop rcx; pop rbx; ret to set the length of
the data to be copied. As a result, we constructed an
ROP chain for calling the memcpy() function. The total
size of the gadget chain was 80 bytes, as shown in Ta-
ble 1. To call the EGETKEY leaf function, we should call the
memcpy() function to copy the KEYREQUEST structure first,
set the register arguments for EGETKEY, and then call the
memcpy() function again to move the generated key out
to the untrusted area. By chaining two memcpy() gadgets
and the leaf function gadgets, calling EGETKEY requires
248 bytes for gadget chaining. Similar to above, calling
the EREPORT also requires 248 bytes for gadget chaining.
Because the size of the chain is small enough (248 bytes
as max) to fit into the overflowed stack (or heap area), we
believe that the attack will work well in most cases.

7 Mitigation

We expect the adoption of traditional defense mechanisms
in SGX to possibly mitigate Dark-ROP. However, since
there are discrepancies between the normal execution en-
vironment and SGX, the specific features of SGX, which
facilitate the attack in some aspects, need to be considered
in the implementation of those defenses.

Gadget elimination. As shown in [28], the useful gad-
get that can be exploited to launch Dark-ROP can be
eliminated before the enclave is deployed. For instance,
we can transform the enclave code in a way to ensure

that it does not contain any non-intended ret instructions.
Moreover, we need to consider how to manage the non-
removable SGX specific gadgets that contain the ENCLU
instruction. For the transition between the host program
and the enclave, at least one ENCLU instruction (for
EEXIT leaf function) is required for the enclave, the re-
quirement that makes it hard to completely remove the
gadgets. We expect that implanting the register validation
logic right after the ENCLU instruction could be a possi-
ble solution. Specifically, we can ensure that the ENCLU
instruction in a certain location is tightly coupled with
one of the pre-defined leaf functions. Besides, the way to
remove the gadget that performs as a memcpy function,
which is generally required to operate (un)marshalling
the parameters between the host program and the enclave,
should also be considered.

Control flow integrity. Deploying the CFI in the en-
clave also needs to consider the SGX-specific features.
For instance, as shown in Figure 3, an attacker can arbi-
trarily incur the AEX to freeze the status (context) in the
enclave. Then, he can create another thread to leak or
manipulate the context (e.g., the saved general-purpose
registers in the stack) of the trapped thread. Therefore,
if the CFI implementation uses one of the general regis-
ters to point to the reference table that defines allowed
target blocks, it can be easily bypassed by the attacker’s
manipulating the context saved in the stack of the trapped
thread.

Fine-grained ASLR. Research projects that adopt
fine-grained ASLR on enclave programs such as SGX-
Shield [31] would possibly mitigate Dark-ROP. However,
it should also accompany with enclave developer’s care-
ful configuration since Dark-ROP can still be effective by
exploiting the number of state save area (NSSA) field that
defines the number of allowed re-entrances to the enclave
without reconstructing it. More specifically, SGX allows
multiple synchronous entrances (EENTER) depending
on the value configured in the NSSA field, even after the
AEX happens (if ERESUME is executed instead of EEN-
TER, the enclave crashes and thus the attacker needs to
reconstruct the enclave). Therefore, if the value of the
NSSA field is large enough, the attacker might be able to
continuously reenter the enclave without reconstructing
it, which enables the preservation of the previous mem-
ory layout. According to SGX specifications [20, 21],
the value of NSSA can be up to a 4-byte integer, and we
expect this to be enough to reliably locate all necessary
gadgets.

8 Related work

In this section, we describe SGX-related prior works in
the following respects: (1) application of SGX, (2) attacks

against SGX, (3) enclave confidentiality protection, and
(4) comparison between BROP and Dark-ROP.

SGX application. Intel SGX has been utilized to se-
cure various applications. Ryoan [17] ported Google
NaCl in and SGX enclave to create a distributed sand-
box that prevents sensitive data leakage. SCONE [3]
leverages SGX to host a Docker container in the enclave,
which specifically concerns the security enhancement and
low overhead. Town Crier [39] isolates the crypto func-
tions for the smart contract in the enclave. To prevent
an Iago [10] attack, Haven [6] isolates the unmodified
Windows application, library OS, and shielded module
together in the enclave. Network services and protocols
such as software-defined inter-domain routing are shown
to possibly coordinate with SGX in Kim et al [25].

Attacks on SGX. Several research projects have ex-
plored potential attack surfaces on SGX. The controlled
side-channel attack [33, 38] shows that the confidentiality
of the enclave can be broken by deliberately introducing
page faults. Asyncshock [37] presents how a synchro-
nization bug inside the multi-threaded enclave can be
exploited. Unfortunately, this work does not target the
attacker who has full control over the enclave program.
Instead, the work describes how the proposed attack can
subvert the confidentiality and integrity of SGX.

Enclave confidentiality protection. As described in
[18, 24, 30], an enclave binary can be distributed as a
cipher text to preserve the confidentiality of the code and
data deployed in the enclave. VC3 [30] shows a concrete
implementation example that partitions the enclave code
base as public (plaintext) and private (encrypted) and
enables the public code to decrypt the private code. CON-
FIDENTIAL [34] provides a methodology that prevents
the secret leakage from the enclave by enforcing the nar-
row interface between the user program and small library,
and defining the formal model to verify the information
release confinement. In addition, Moat [34, 35] tracks
information flows by using static analysis to preserve the
enclave confidentiality. Our work shows that, even with
the protection of enclave confidentiality, Dark-ROP can
be successfully deployed by exploiting a certain SGX
hardware design and its functionality.

Revisiting BROP for Dark-ROP. Blind ROP [7] is an
attack technique that can locate and verify the required
gadgets in the restrictive environment where neither the
target binaries nor the source code is known to the attacker.
To this end, it depends on two primary gadgets, which
are called the trap gadget and the stop gadget, both of
which incur the program to be crashed or stopped when
they are consumed (popped) as part of the input payload
that is crafted by an attacker to specify the potential (and
currently probed) gadget.

On the contrary, the Dark-ROP attack takes an orthog-
onal approach, which exploits the three oracles that allow
the attacker to obtain hints of the gadgets by the fea-
tures of SGX (i.e., page fault, EEXIT, and the memory)
to identify required gadgets from a completely hidden
environment. Additionally, the Dark-ROP attack can be
applied to any application that runs in an enclave, whereas
original Blind ROP is only applicable to server-like appli-
cations.

9 Conclusion

Dark-ROP is the first practical ROP attack on real SGX
hardware that exploits a memory-corruption vulnerability
and demonstrates how the security perimeters guaranteed
by SGX can be disarmed. Despite the vulnerability in the
enclave, realizing the attack is not straightforward since
we assume the most restrictive environment where all the
available security measures based on Intel SGX SDK and
recent SGX-related studies are deployed in the enclave;
thus, the code reuse attack and reverse engineering on the
enclave binary may not be conducted. To overcome this
challenge and accomplish the attack, Dark-ROP proposes
the novel attack mechanism, which can blindly locate
the required ROP gadgets by exploiting SGX-specific
features such as enclave page fault and its handling by
an asynchronous exception handler, ENCLU introduced
as part of new SGX instructions, and shared memory
for the communication between the enclave and the non-
enclave part of program. Finally, as a consequence of
Dark-ROP, we show that the attacker can successfully
exfiltrate the secret from the enclave, bypass the SGX at-
testation, and break the data-sealing properties. We hope
that our work can encourage the community to explore the
SGX characteristic-aware defense mechanisms as well as
an efficient way to reduce the TCB in the enclave.

10 Acknowledgments

We thank the anonymous reviewers for their helpful feed-
back. This research was supported by Basic Science
Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (NRF-2017R1A2B3006360), ICT
R&D programs MSIP/IITP [R-20150223-000167] and
MSIP/IITP [R0190-15-2010]. Jaehyuk Lee was partially
supported by internship at Microsoft Research. This re-
search was also partially supported by the NSF award
DGE-1500084, CNS-1563848, CRI-1629851, ONR un-
der grant N000141512162, DARPA TC program under
contract No. DARPA FA8650-15-C-7556, and DARPA
XD3 program under contract No. DARPA HR0011-16-C-
0059, and ETRI MSIP/IITP[B0101-15-0644].

References

[1] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.
Innovative technology for cpu based attestation and sealing. In
Proceedings of the 2nd international workshop on hardware and
architectural support for security and privacy (2013), vol. 13.

[2] ARM. Building a secure system ising trustzone technology, Dec.
2008. PRD29-GENC-009492C.

[3] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH, T.,
MARTIN, A., PRIEBE, C., LIND, J., MUTHUKUMARAN, D.,
O’KEEFFE, D., STILLWELL, M. L., ET AL. Scone: Secure linux
containers with intel sgx. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16) (2016),
USENIX Association.

[4] BARNETT, R. Ghost gethostbyname () heap overflow in glibc
(cve-2015-0235), january 2015.

[5] BAUMAN, E., AND LIN, Z. A case for protecting computer games
with sgx. In Proceedings of the 1st Workshop on System Software
for Trusted Execution (2016), ACM, p. 4.

[6] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding ap-
plications from an untrusted cloud with haven. In Proceedings
of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (Broomfield, Colorado, Oct. 2014),
pp. 267–283.

[7] BITTAU, A., BELAY, A., MASHTIZADEH, A., MAZIÈRES, D.,
AND BONEH, D. Hacking blind. In 2014 IEEE Symposium on
Security and Privacy (2014), IEEE, pp. 227–242.

[8] BLETSCH, T., JIANG, X., FREEH, V. W., AND LIANG, Z. Jump-
oriented programming: a new class of code-reuse attack. In
Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security (2011), ACM, pp. 30–40.

[9] BUCHANAN, E., ROEMER, R., SHACHAM, H., AND SAVAGE,
S. When good instructions go bad: Generalizing return-oriented
programming to risc. In Proceedings of the 15th ACM conference
on Computer and communications security (2008), ACM, pp. 27–
38.

[10] CHECKOWAY, S., AND SHACHAM, H. Iago Attacks: Why the Sys-
tem Call API is a Bad Untrusted RPC Interface. In Proceedings of
the 18th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(Houston, TX, Mar. 2013), pp. 253–264.

[11] CHHABRA, S., SAVAGAONKAR, U., LONG, M., BORRAYO, E.,
TRIVEDI, A., AND ORNELAS, C. Memory encryption engine
integration, June 23 2016. US Patent App. 14/581,928.

[12] DURUMERIC, Z., KASTEN, J., ADRIAN, D., HALDERMAN,
J. A., BAILEY, M., LI, F., WEAVER, N., AMANN, J., BEEKMAN,
J., PAYER, M., ET AL. The matter of heartbleed. In Proceedings of
the 2014 Conference on Internet Measurement Conference (2014),
ACM, pp. 475–488.

[13] GOOGLE. glibc getaddrinfo() stack-based buffer overflow (cve-
2015-7547), february 2016.

[14] GREENE, J. Intel trusted execution technology. Intel Technology
White Paper (2012).

[15] GUERON, S. A memory encryption engine suitable for general
purpose processors. Cryptology ePrint Archive, Report 2016/204,
2016. http://eprint.iacr.org/.

[16] HOEKSTRA, M., LAL, R., PAPPACHAN, P., PHEGADE, V., AND
DEL CUVILLO, J. Using innovative instructions to create trust-
worthy software solutions. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security
and Privacy (HASP) (Tel-Aviv, Israel, 2013), pp. 1–8.

[17] HUNT, T., ZHU, Z., XU, Y., PETER, S., AND WITCHEL, E.
Ryoan: A distributed sandbox for untrusted computation on secret
data. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), USENIX Association.

[18] INTEL. SGX Tutorial, ISCA 2015. http://sgxisca.weebly.
com/, June 2015.

[19] INTEL CORPORATION. Intel Software Guard Extensions Program-
ming Reference (rev1), Sept. 2013. 329298-001US.

[20] INTEL CORPORATION. Intel Software Guard Extensions Program-
ming Reference (rev2), Oct. 2014. 329298-002US.

[21] INTEL CORPORATION. Intel SGX Enclave Writers Guide
(rev1.02), 2015. https://software.intel.com/sites/
default/files/managed/ae/48/Software-Guard-
Extensions-Enclave-Writers-Guide.pdf.

[22] INTEL CORPORATION. Intel SGX SDK for Windows* User
Guide (rev1.1.1), 2016. https://software.intel.com/
sites/default/files/managed/d5/e7/Intel-SGX-SDK-
Users-Guide-for-Windows-OS.pdf.

[23] JOHNSON, S., SAVAGAONKAR, U., SCARLATA, V., MCKEEN,
F., AND ROZAS, C. Technique for supporting multiple secure
enclaves, June 21 2012. US Patent App. 12/972,406.

[24] JP AUMASSON, L. M. Sgx secure enclaves in practice:security
and crypto review, 2016. [Online; accessed 16-August-2016].

[25] KIM, S., SHIN, Y., HA, J., KIM, T., AND HAN, D. A First Step
Towards Leveraging Commodity Trusted Execution Environments
for Network Applications. In Proceedings of the 14th ACM Work-
shop on Hot Topics in Networks (HotNets) (Philadelphia, PA, Nov.
2015).

[26] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H., AND
PEINADO, M. Inferring Fine-grained Control Flow Inside SGX
Enclaves with Branch Shadowing (to appear). In Proceedings
of the 26th USENIX Security Symposium (Security) (Vancouver,
Canada, Aug. 2017).

[27] OHRIMENKO, O., SCHUSTER, F., FOURNET, C., MEHTA, A.,
NOWOZIN, S., VASWANI, K., AND COSTA, M. Oblivious multi-
party machine learning on trusted processors. In USENIX Security
Symposium (2016), pp. 619–636.

[28] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Smashing the gadgets: Hindering return-oriented programming
using in-place code randomization. In 2012 IEEE Symposium on
Security and Privacy (2012), IEEE, pp. 601–615.

[29] RUTKOWSKA, J. Thoughts on Intel’s upcoming Software Guard
Extensions (Part 2), Sept. 2013. http://theinvisiblethings.
blogspot.com/2013/09/thoughts-on-intels-upcoming-
software.html.

[30] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C.,
PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH, M.
VC3: Trustworthy Data Analytics in the Cloud using SGX. In
Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland) (San Jose, CA, May 2015).

http://eprint.iacr.org/
http://sgxisca.weebly.com/
http://sgxisca.weebly.com/
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/d5/e7/Intel-SGX-SDK-Users-Guide-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/d5/e7/Intel-SGX-SDK-Users-Guide-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/d5/e7/Intel-SGX-SDK-Users-Guide-for-Windows-OS.pdf
http://theinvisiblethings.blogspot.com/2013/09/thoughts-on-intels-upcoming-software.html
http://theinvisiblethings.blogspot.com/2013/09/thoughts-on-intels-upcoming-software.html
http://theinvisiblethings.blogspot.com/2013/09/thoughts-on-intels-upcoming-software.html

[31] SEO, J., LEE, B., KIM, S., SHIH, M.-W., SHIN, I., HAN, D.,
AND KIM, T. SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs (to appear). In Proceedings
of the 2017 Annual Network and Distributed System Security
Symposium (NDSS) (San Diego, CA, Feb. 2017).

[32] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proceed-
ings of the 14th ACM conference on Computer and communica-
tions security (2007), ACM, pp. 552–561.

[33] SHINDE, S., CHUA, Z. L., NARAYANAN, V., AND SAXENA, P.
Preventing page faults from telling your secrets. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communi-
cations Security (2016), ACM, pp. 317–328.

[34] SINHA, R., COSTA, M., LAL, A., LOPES, N., SESHIA, S.,
RAJAMANI, S., AND VASWANI, K. A design and verification
methodology for secure isolated regions. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (2016), ACM.

[35] SINHA, R., RAJAMANI, S., SESHIA, S., AND VASWANI, K.
Moat: Verifying confidentiality of enclave programs. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 1169–1184.

[36] TSAI, C.-C., ARORA, K. S., BANDI, N., JAIN, B., JANNEN, W.,
JOHN, J., KALODNER, H. A., KULKARNI, V., OLIVEIRA, D.,
AND PORTER, D. E. Cooperation and security isolation of library
oses for multi-process applications. In Proceedings of the Ninth
European Conference on Computer Systems (2014), ACM, p. 9.

[37] WEICHBRODT, N., KURMUS, A., PIETZUCH, P., AND KAPITZA,
R. Asyncshock: Exploiting synchronisation bugs in intel sgx
enclaves. In European Symposium on Research in Computer
Security (2016), Springer, pp. 440–457.

[38] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In
Security and Privacy (SP), 2015 IEEE Symposium on (2015),
IEEE, pp. 640–656.

[39] ZHANG, F., CECCHETTI, E., CROMAN, K., JUELS, A., AND SHI,
E. Town crier: An authenticated data feed for smart contracts. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (2016), ACM, pp. 270–282.

A Dark-ROP gadgets

Table 2: Gadgets used for launching the Dark-ROP attack against the RemoteAttestation example code in the Intel SGX SDK. We
note that we found all gadgets from the standard library files, which are usually linked to the enclave program. First, the entire
objects in the libsgx_trts.a must be linked to the enclave binary because the library contains the code for controlling the enclave and
communication between the untrusted app and the enclave, which are essential to function the enclave. Finally, we found memcpy()
gadget from the standard c library for SGX (libsgx_tstdc.a).

Gadget Description From

ENCLU Gadget
do_ereport:

enclu The ENCLU gadget for invoking the leaf functions. libsgx_trts.a

pop rdx The gadget is followed by three pop gadgets

pop rcx so that the attacker can set the

pop rbx rdx, rcx, and rbx registers to arbitrary values,

ret which will be used for passing arguments to the leaf functions.

sgx_register_exception_handler:

mov rax, rbx A gadget for manipulating the rax register. libsgx_trts.a

pop rbx Since the attacker can control the rbx register with the gadget above,

pop rbp the attacker can set rax to be an arbitrary value.

pop r12 This is for setting the index of the leaf function for

ret the ENCLU instruction.

relocate_enclave: libsgx_trts.a

pop rsi A gadget for manipulating rsi and rdi registers

pop r15 to set arguments for invoking memcpy

ret and the other library functions.

pop rdi

ret

Memcpy Gadget
memcpy: A gadget for copying enclave code and data to untrusted memory, libsgx_tstdc.a

and for copying in the reverse direction vice versa.

Table 3: Gadgets used to launch Dark-ROP in Windows 64bit.

Gadget Description From

GPR Modification Gadget
__intel_cpu_indicator_init:

pop r15 This gadget is used for manipulating GPRs sgx_tstdc.lib

pop r14 All Pop-gadgets required for launch Dark-ROP

pop r13 can be located in this one function

pop r12

pop r9 This function is introduced by libirc.a

pop r8 which is an Intel support library for CPU dispatch

pop rbp Note that this function is also available at

pop rsi libsgx_tstdc.a in Linux 64bit.

pop rdi

pop rbx

pop rcx

pop rdx

pop rax

ret

ENCLU Gadget
do_ereport:

enclu sgx_trts.lib

pop rax

ret

	Introduction
	Background
	Security Features of SGX
	Instruction Specifications

	Overview
	Launching the ROP attack in SGX
	The Dark-ROP Attack
	Threat Model

	Attack Design
	Finding gadgets in a hidden enclave program
	A proof-of-concept Dark-ROP attack

	The SGX Malware
	Implementation
	Mitigation
	Related work
	Conclusion
	Acknowledgments
	Dark-ROP gadgets

